Coping with the Climate

For Wisconsin farmers dealing with wild swings in weather, adaptation is the key.

This general forecast first came in 2007 from the Intergovernmental Panel on Climate Change, the international scientific body that has coordinated the work of thousands of scientists around the world. They projected that without adaptive measures, ag productivity in higher latitudes could decrease by 5 to 20 percent as temperatures climb.

As a co-chair of the ag working group of the Wisconsin Initiative on Climate Change Impacts (WICCI)—a partnership between the University of Wisconsin, the Wisconsin Department of Natural Resources and an array of other agencies and public and private institutions—Kucharik and his collaborators have been checking these projections for Wisconsin. Without adaptive measures, a 2 degree Celsius increase in maximum monthly average temperatures in July and August could reduce yields by 6 percent for corn and 2 to 4 percent for soybeans. A 4 degree increase could lead to corn and soybean yield losses of 22 to 28 percent and 13 to 24 percent, respectively.

That’s a projection over decades, but so much on-farm decision-making is short-term. “If I walk into a room of producers and say that 50 years from now our summer temperature will be on average 3 degrees warmer, so what?” Kucharik asks. “It means nothing. They’re worrying about next year.

“I hear a lot of concern,” he continues. “But I also hear, on the flip side, that people have been farming for three generations and obviously have been adapting to changes in climate with no significant problems thus far.”

Speaking months before the rain stopped and the summer became ruinous for many, Kucharik looks prescient now: “I think the risk is elevated for failure, not only in production but also in economic failure.”

Kirk Leach and his brother Kent farm 1,500 acres scattered south and east of Janesville. Driving around the spread in May, Leach ruminates about his choices this year. For example, the early spring favored weeds; they had to be knocked back before planting. Leach opted to do that by turning the soil with a disc cultivator, at about half the cost of herbicide. He wonders if that cost him precious soil moisture. “Now our fields sit, just waiting on a rain before things start germinating,” he says.

Not everywhere, though—he’s got 500 acres under irrigation. We drive  by the newest rigs, covering 65 acres.  The total cost of these center-pivot units will be $114,000 and their high capacity wells, another $30,000. That’s a lot of money, but Leach says it will pay for itself in less than 10 years. It’s a hedge against years like this, and it’s also allowed him to diversify into higher-margin specialty crops like mint and peas.

“It’s a hell of a good aquifer,” Leach says of the water beneath the Rock Prairie. But he knows scarcity is relative. What if every field is irrigated and industrial Janesville keeps growing? “Whether there will be an issue someday or not, who knows?”

Sitting in his truck at the edge of a cornfield, Leach grabs a binder filled with Google maps of his fields, each covered with notation.

“Variability,” he says. “You’re playing a guessing game with that every year.” Besides the irrigation, he spends a lot of time tinkering with corn hybrids, and these maps keep track of the 27 varieties he has stretched over 1,000 acres.

“Probably it’s my susceptibility to my salesmen,” he laughs. Decades of his own experimentation have shown that he generally gets better yields on longer-maturity hybrids. And with seed corn now running around $300 a bag, he’s never satisfied with just last year’s winner. “Information is good,” he says, more seriously. “You’ve gotta push the pencil. Every habit you had, you have to constantly question it.”

That’s an attitude guaranteed to make CALS/UW Extension agronomists Joe Lauer and Shawn Conley BS’96 MS’99 PhD’01 smile. Lauer is the state’s leading corn agronomist; Conley specializes in soybeans and small grains. Between them they have 24,000 test plots scattered across the state, maintaining a series of long-running experiments that test planting dates, new hybrids, crop rotations and numerous other management variables.

Lauer acknowledges that this has been a challenging season—as of early August, 20 to 30 percent of the southern tier of cornfields were barren—but he hews carefully to a long view. “Farmers experience weather variability all the time,” he says. Think March was crazy? He has seen farming logs dating from the 1850s that talk about catching grasshoppers in January in the Upper Midwest.

Lauer says a huge part of climate change adaptation is the continuous improvement of genetics being pursued by the public and private sectors. This year alone, 510 varieties of corn are being tested in his trials, including new strains that tout improved drought tolerance. For example, recently developed resistance to the European corn borer helps prevent stalk damage, which allows the plant to better withstand heat extremes. More traits are coming, but it can take seven to 10 years for new varieties to enter production.