Candid Camera

At first there is nothing—windblown leaves maybe, or the quicksilver skitter of a squirrel. I can’t identify the source of the movement, and settle back expectantly because soon, I know, there will be more chances.

Huddled in the twilit hour I am hunting, expecting the common whitetail deer—but hopeful for more elusive game. Where there are deer there could be a wolf, right? A bear? Either would make the wait worthwhile. Or perhaps something I’ve never seen, like the elusive fisher?

Some time passes before I see the princely buck, so hale and burnished brown that my gaze lingers long in pure appreciation. His neck and shoulders are heftier than even the regal eight-point crown suggests. I’ve seen a lot of deer already, but he has presented broadside, at perfect range. My finger hesitates as I savor the action. And finally I decide, yes, this is a keeper.

I shift in my perch and refocus. Yes, there is the heart. My finger flexes. And I click on the heart icon. Subject 4988060, a Dane County buck snapped last November, is now in my favorites folder.

My hunting perch, you may now realize, is my customary recliner, and I’m using my laptop to spy on the wildlife of Wisconsin while dinner warms. In 20 minutes I’ll go through a few hundred of the millions of photos already collected by Snapshot Wisconsin, a growing net- work of trail cameras.

By now everybody’s seen trail cam photos. Maybe you or someone you know already uses them to scout deer, or just to see what’s on your land when you’re not looking.

Certainly someone’s emailed you a photo or short video, or they’ve shown up in your social media feeds. Those are the special shots, curated, viral. Snapshot Wisconsin is the raw feed, and therein lies the fun. Because here you can get your wildlife fix and be a scientist, too. Identifying these animals contributes to a cutting-edge effort that may fundamentally change the way we study wildlife.

“It’s like having 350 people out there in the woods day and night recording everything they see,” says Jennifer Stenglein MS’13 PhD’14, a research scientist with the Wisconsin Department of Natural Resources (DNR) who directs Snapshot Wisconsin. “That’s amazing data that we’ve never really had before.”

And 350 is just for starters. The goal is four cameras in every township in Wisconsin. Stenglein will be happy if they can reach at least 3,000 cameras. “We are, I believe, going to have one of the best data sets in the world,” she says.

At 10:40 every morning a NASA satellite flies over Wisconsin and snaps a series of pictures. The photographs measure many things, including a day-by-day record of how green the landscape is, which in turn gives us an idea of how well the plants are doing. The data has been collected for years—one of the satellites, Terra, has been in orbit since 1999—and offers an ever-lengthening perspective on the American landscape.

Satellite photos are now commonplace, but for most people remote sensing data is an abstraction. Woody Turner, program manager for NASA’s Ecological Forecasting, is always working to make that data matter to as many Americans as possible. “It’s really important to be able not only to understand what’s happening in your backyard or your woodlot but also to put it in the broader context,” he says. “The satellite brings in the broader context.”

In 2012 NASA announced it wanted to fund a project connecting its data with state agencies and university researchers. These are regular customers, but now there was a twist: NASA wanted a project that also used trail cameras and citizen scientists.

Phil Townsend, a professor of forest and wildlife ecology at CALS, had wanted to connect trail cams and remote sensing data for years, and he quickly called his professor colleague Ben Zuckerberg to brainstorm the citizen science angle. Then they reached out to Karl Martin BS’91, then the DNR’s forestry and wildlife research chief,
who knew camera prices were dropping and was also thinking about how to use them to improve research techniques. Martin also had access to a rich store of potential volunteers.

With all the ingredients NASA was looking for, the Wisconsin team won a pilot grant to install 80 cameras. It was an opportunity to improve wildlife research and put big data to work in the natural world. It even seemed like a promising tool for youth engagement—a partial antidote to nature deficit disorder. “It’s a very good example of cross-disciplinary, cross-agency teamwork,” says Martin, now the interim dean and director for UW–Extension Cooperative Extension. “This is how you leverage the Wisconsin Idea.”

Almost as soon as it began, state budget woes put the project on ice. In a curious twist, a raging national debate over gun control led to record sales of guns and ammunition. These sales are federally taxed, and a portion is returned to the states via the Pittman–Robertson Act for natural resource projects. With a secure funding stream, Snapshot Wisconsin began in earnest.

While the technology has been available for years, the ambitious scale remains a challenge. Educators and tribes can install cameras throughout the state, but cameras for private land are being rolled out gradually. Racine, Vernon and Dodge counties recently joined Iowa, Iron, Jackson, Manitowoc, Sawyer and Waupaca. At last count 417 volunteers were operating 607 cameras that have taken more than 8 million photos.

“The logistics are a big part of it,” says Townsend. “The scale that we’re doing this at has never been done before.” But scale is also the payback. Townsend is interested in phenology—the cycling of the landscape from brown to green and back again. Factors ranging from climate change to land use change can influence phenology. The Snapshot cameras are programmed to take an image at 10:40 a.m. every day, in sync with the satellite, providing a much richer data profile for that precise location.

Meanwhile the motion trap captures the phenological patterns of the animals. “Animals respond differently to their environment,” says Townsend. When they give birth, when and where they feed, when they’re out and about and when they’re in hiding all change, and we understand only a fraction of the whys. Bringing landscape data together with animal data may answer a lot of outstanding questions.

“Wildlife research every now and then gets transformed by technology,” notes Tim Van Deelen, a professor of forest and wildlife ecology. Radio telemetry revolutionized wildlife study in the ’70s, but it also took a while before researchers were able to put that information to use.

“That’s where we are with camera data,” Van Deelen says. “We’re in that lag phase where we are figuring out how to be efficient with the use of that data. I’m betting that as cool as things are right now, they’re going to get cooler as analytic techniques develop. I think there is a lot of basic biology that is going to come clear because underlying Snapshot Wisconsin is a very robust sampling scheme.”

There are two kinds of Snapshot Wisconsin volunteers. One group maintains cameras—either on their own land or special project cameras on public lands. Sited away from human activity and preferably on a game trail, the cameras operate day and night, snapping three photos in quick succession via a motion trigger. Memory cards and batteries need to be changed at least every three months, and the card uploaded back to Snapshot Wisconsin. Here technology takes over. To avoid any possibility of surveillance, the images on the card are encrypted. After decoding they are uploaded to Microsoft Cognitive Services, where special software removes images that contain humans. Then the image batches are sent back to each camera volunteer, who removes any people pictures the software may have missed.

After this double-check, the images move to me in my armchair via Zooniverse, a citizen science web platform designed by the Adler Planetarium in Chicago. Its goal is to harness our digital enthusiasm for something more than selfies and cat videos. On Zooniverse you can help with research projects that range from finding evidence of water on Mars to transcribing Civil War telegrams.

Why not just let a computer do it? Even in this age of the Watson cognitive computing platform and pervasive facial recognition, the human mind is still the most agile tool available for subtle pattern recognition. “There is no machine that’s as good as the human brain when it comes to being able to capture these kinds of images and classify them appropriately,” explains Zuckerberg.

Log on to Zooniverse and you’ll soon begin to appreciate both the challenge and your gift. The three-photo sequence captures movement. Some images are empty, and if the frame sways, you can tell that wind triggered the snap. But then you find an empty image where just a tiny bit of vegetation moves, and you realize that something has just passed by. Sometimes there’s just a blur of color, or—at night—eye gleam. After a while, you begin to recognize places and patterns, to appreciate the different ways that animals use and move across the landscape. Even the boring photos can surprise you. There is one squirrel in Sawyer County who loves to run a steeplechase along a few fallen birch logs. Occasionally this camera catches a deer. But just as I was getting frustrated with what felt like the 99th photo of the same squirrel, I realized the field beyond was crowded with 14 young turkeys.

Citizen science dates back at least as far as the then-nascent Audubon Society’s first Christmas bird count in 1900. (Plain folk have been collecting astronomical and meteorological observations for far longer.) In Wisconsin, thousands participate in all kinds of projects, monitoring everything from water quality to bat populations.

Zuckerberg hopes that through Snapshot Wisconsin, biology can join the ranks of such disciplines as meteo- rology that collect data continuously. “Collecting biological data tends to be very difficult,” he explains. State-of-the- art radio tracking can follow only a few individuals. Ecologists want to see how species respond across broad stretches of space and time.

“To me the real value of this is being able to think about animal communities over the course of an entire year,” Zuckerberg says. “It’s thinking about big-pattern ecology.”

Snapshot Wisconsin is in what you might call its giddy start- up phase. There isn’t an end product yet, but as the project ramps up, the anecdotal excitement grows. Director Jennifer Stenglein can tell you that there are quite a few porcupines, not so many striped skunks and a fair number of fly- ing squirrels. Also, that we don’t capture as many wolves as you might think, and that it can be very hard to tell coyotes from wolves. And, to no one’s surprise, there are lots and lots of deer. In fact, 60 percent of the animal photos from Sawyer and Iowa counties have deer. Which leads to an obvious question: Can Snapshot Wisconsin close the persistent (and politically sticky) gap between hunters and the DNR about deer populations? Nobody is taking bets on that, but the project should upgrade research techniques overall. “The way that the DNR tallies wildlife is highly sporadic,” says Townsend. “It’s not systematic, it’s different among different wildlife species, it’s difficult to do and it’s expensive to do well.”

Stenglein’s other major DNR responsibility is care and feeding of the state deer population model, and she sees Snapshot Wisconsin as a dual-use tool. On the one hand, it can contribute to the modeling currently in place, providing an index for population size, some idea of overwinter survival, and the fawn-doe ratio. “Cameras can be the best way to get a couple of those deer metrics, we think,” she says.

“It might also lead to an entirely different way of understanding the deer population,” Stenglein notes. The current model uses data from two observation windows: an August/September survey conducted by the DNR and the public, and the nine-day gun season harvest data. Snapshot would provide many more data points in time.

Two important research projects will help determine the ultimate value of the cameras. Elk reintroduction in Sawyer, Ashland, Bayfield and Jackson counties includes a much higher density of cameras. This will allow scientists to check the validity of the lower-density Snapshot data. And because many of the elk are also collared, traditional telemetry data can also be compared with the camera data. Similar comparisons can be made on another project in Dane, Iowa and Grant counties studying the survival impact of chronic wasting disease. Deer and their predators (coyote and bobcat) are both being collared, and cameras are also planned.

Current deer population models have a strong grasp of general population dynamics, but they are missing crucial landscape factors that we know influence deer. That, says Townsend, is where Snapshot Wisconsin will make the difference. “You are not going to get any one township perfectly, but by sampling enough townships you are going to sample the diversity of land cover and land uses,” he explains.

When all of those cameras meet all of that diversity, patterns will emerge. Find a relationship between deer density and vegetation and you can begin to make predictions. “The strength is in numbers,” Townsend says. “The remote-sensing data is everywhere. Can we harvest all that information to help make the models better?”

Charged with predicting deer populations, Stenglein usually thinks about lots of deer all at once. But as she’s built up Snapshot Wisconsin, a different window on wildlife has opened.

It began when she saw the work of an artist who was using her own trail cam photos for inspiration. Stenglein realized the artist was not painting a generic raccoon, but a very particular raccoon. The artist didn’t “know” the raccoon, and was just looking at photos. Yet there was a kind of individual relationship on view. “I realized that so much of this project is actually about the individuals in these photos,” Stenglein says. “That’s what draws people to this project.”

It was easy to imagine the connection landowners might feel for a camera they install and maintain on their property, or even one on public lands that they use. Stenglein gets lots of email from volunteers thrilled the first time they get a fisher or black bear they didn’t know they had on their property. Sue Steinmann MS’83 volunteered to place a camera on her scrub oak barrens near Arena “to see if we have bear or bobcats,” she says. “I really think we had a wolf come through last winter.” Now she’ll have more than footprints for proof.

Steinmann and her husband are active in ecological restoration, so they are probably more engaged in natural resource issues than most people in Wisconsin. But one of the things being studied by Snapshot Wisconsin is how citizen science can lead to better communication between scientists, resource managers and the public—and how this might lead to better resource management overall.

“When you have folks who are engaged in the process in more depth, and maybe helping to drive some of the questions, or helping to partici- pate in the interpretation of the data, that’s where you’re starting to see some of these community-level outcomes,” says Christine Anhalt-Depies, who is currently pursuing a PhD in wildlife ecology.

Anhalt-Depies is watching the online dynamic among the volunteers— some of whom come from all over the world—and how that evolves. Members of the research team are identified in Zooniverse, and the project also includes a few moderators (you can think of them almost as docents)—volunteers who help new users navigate the learning curve. The chatter is informed and supportive, and while the task might seem rote, it quickly becomes fun.

“I get addicted to doing that and have to stop after a while,” admits Sue Johansen BS’94. As a naturalist at Devil’s Lake State Park, she monitors three cameras for the park and one Snapshot Wisconsin camera in the West Bluff area. While the cameras began as a new way to engage visitors, they’ve also found animals—flying squirrels and short-tailed weasels—that no one knew were in the park. “What happens when you’re not around?” she says. “It’s a different way to connect to the outdoors.”

Then there are the “super users.” Zooniverse projects tend to develop their own core volunteers, people who process fantastically more images than most people. Some of these people are fully vested in the community aspect, engaging in conversation through message boards. Others remain silent. What are they getting from it, Anhalt-Depies wants to know. Will it translate to engagement in the real world?

“These are not cyborgs out there,” Zuckerberg says. “These are people very invested in the research.”

It’s these modern times that make Snapshot Wisconsin so fascinating.

We are becoming so acclimated to screens, to surveillance, to the omnipresence of cameras. Social networks have always mattered, but they are more visible than ever as we attempt to reap their bumper crops and avoid their vicious undertow. Selfies may be changing our very sense of our place in the world. Science and business are being rapidly remade by our ability to collect big data, and by our struggle to understand it.

Snapshot Wisconsin rides the rebounding ripple effects of all of these phenomena. And yet somehow nature remains at the center of the experience.

I admit: I had my doubts. But I threw both hands up in delight when I scored my first black bear. I was tickled to learn the blob that I had thought might be a wounded turkey turned out to be, literally, a happy family pileup of otters. I laughed longer than I should have when the camera caught a coyote leaving a fecal sample. (Photo bomb.)

In nature there is no substitute for observation. And while the parade of images in Snapshot Wisconsin should not be mistaken for being out there, it’s a legitimate supplement, a booster shot against nature deficit disorder.

“If you are going to maintain nature or wild places on this earth as our own numbers grow, I think it’s going to be because we care about it,” says NASA’s Woody Turner. “And to care about something you have to be at least somewhat familiar with it.”

Zuckerberg worries that we are increasingly detached from nature— that some children actually view nature as something to fear. Sometimes he listens to his children, ages 9 and 14, on Zooniverse in the next room. They love all the deer pictures but get totally jazzed by the occasional bear.

“I think using technology to allow another experience is what makes this project fun,” he says. “This offers a window for kids to become interested and engaged in natural history. I think any way you can do that is going to be a positive experience.”

Shaping the Future of Farming

Thirty-five years ago, when CALS bacteriologist Winston Brill and his colleagues set out to exploit science’s newfound ability to manipulate genes to confer new traits on crop plants, the technology was, literally, a shot in the dark.

Working in a facility in Middleton, just west of Madison, Brill and his team blasted plant cells using a gene gun—a device that fired microscopic gold beads laden with DNA.

The idea was to introduce foreign genes that could confer new abilities on the plants that would ultimately be grown from the altered cells. First as Cetus of Madison, Inc., later as Agracetus and still later as a research and development outpost of Monsanto Company, the Middleton lab was, by all accounts, a hub of plant biotechnology innovation.

“Agracetus was the first in the world to engineer soybean, first in the world to engineer cotton, first in the world to field-test a genetically engineered plant,” recalls Brill, who was recruited by Cetus to establish the lab in the early 1980s. “Thus, the Madison area and the UW influence led to historically important events.”

In December 2016, the $10 million,100,000-square-foot facility—a warren of labs, greenhouses and growth chambers—was donated to UW–Madison by Monsanto to become the Wisconsin Crop Innovation Center (WCIC).

The hope, according to agronomy professor Shawn Kaeppler BS’87—now WCIC’s director—is that the center will add to its string of plant biotechnology achievements as one of just a few public facilities in the country dedicated to plant transformation, where genetically modified plant cells are taken from tissue culture and regenerated into large numbers of complete fertile plants.

The advent of the WCIC “is an unprecedented opportunity to add capabilities and capacity we couldn’t afford otherwise,” says Kaeppler, an expert on corn. Its acquisition by UW–Madison, he and others note, comes at an opportune time as powerful new techniques in synthetic biology are poised to make the development of plants with new or improved traits much more than a shot in the dark with a gene gun.

WCIC will function very much like a core facility, providing cell culture, phenotyping and plant transformation services for researchers at UW– Madison and other universities. It is also coming online at a time when the need for such resources is acute.

“There is a recognized need nationally,” explains agronomy professor Heidi Kaeppler BS’87, an expert in plant transformation who is serving as WCIC’s transformation technology director. “There are just a few public facilities around the U.S. and demand is outpacing the abilities of those facilities. It is a bottleneck.”

For researchers like bacteriology and agronomy professor Jean-Michel Ané, a member of the WCIC scientific advisory board, the new center means he will be able to devote more time to exploring such things as the genetic interplay that occurs when plants and bacteria collude to draw nutrients from the air through the act of nitrogen fixation.

Nitrogen-fixing plants such as soybean, alfalfa and clover are staples of modern agriculture. They are essential to the crop rotation practices that prevent exhaustion of soil from crops such as corn. Ané and many other scientists have long dreamed of engineering the ability to fix nitrogen into plants like corn to transcend the need for expensive and environmentally harmful chemical fertilizers.

However, engineering complex traits such as nitrogen fixation in plants that don’t have that innate ability is a monumental scientific and technological undertaking. To begin with, there are two organisms—the plant and a bacterium—working cooperatively. Each has its own genome, and many different genes from each organism are in play to accommodate the act of drawing life-sustaining nutrients from the air.

To confer that trait on corn, for example, is an exercise far more complicated than tinkering with one or a few genes, notes Ané. “The goal is to create maize that has this association. However, modifying a single gene will not be sufficient,” he says. “We modify many genes at a time. There is a lot of trial and error. We need to try many combinations.”

Those combinations come about in the lab as scientists alter individual plant cells by adding or subtracting genes of interest. Today, scientists can harness new techniques such as CRISPR– Cas9—a fast, cheap and accurate genome editing tool—and potent new cloning technologies that allow scientists to easily assemble multiple DNA fragments and their assorted genes into novel sequences.

Even with potent new tools like CRISPR–Cas9, engineering plants is a big, difficult task. A gene needs to be dropped in the right place on the genome and be in association with the right “promoters,” segments of DNA that initiate gene transcription, the first step toward expressing a new gene in an organism. Once plant cells are genetically altered, they must be transformed into large numbers of actual plants for further testing in the lab and, ultimately, the field. It is essential to know, for example, that the new genetic construct is stable, that the new genes are passed from generation to generation, and what effects they may have on plant growth or yield.

The promise of WCIC, Ané believes, will be the opportunity to work through all of those steps more efficiently and cost-effectively, and carry projects from the lab to the field much faster.

“We can focus on really doing science instead of growing plants,” Ané says. “We can now make genetic constructs very quickly. Within a month we can make hundreds of constructs. The limiting aspect is plant transformation. However, the scale of transformation we can do at WCIC allows us to think seriously about applying synthetic biology to plants.”

To begin with, WCIC is providing plant transformation services for corn, soybean and sorghum, big commercially important crop species. But Shawn Kaeppler envisions WCIC playing a role, as well, with crop plants that have not yet risen to the top of commercial research agendas.

To date, commercial interest has focused primarily on just a handful of traits—insect and herbicide resistance—in a handful of widely planted crops. Uncharted territory, Kaeppler says, exists in the full range of crop plants and their many different traits.

A ready example is switchgrass, a native perennial that is under the microscope at the Great Lakes Bioenergy Research Center (GLBRC), a U.S. Department of Energy- funded multi-institutional research center headquartered on the UW–Madison campus. The grass is seen as a potential feedstock for converting its biomass to liquid fuel. However, efficient conversion of plant materials to energy remains a challenge, and plant genetics will play a big role in refining the traits that will make that possible.

“WCIC will help lead us to the next generation of crop breeding and plant genetics,” explains Kate VandenBosch, the dean of CALS, referencing, broadly, the genetic makeup of the crop plants in play. “Scientific agencies at the federal level have invested a lot in understanding genomes, but we still have a lot of work to do to understand how those genes function.”

Indeed, genetic sequencing technologies have advanced to the point where new plant genomes are sequenced with increasing regularity. The genomes of crop plants like watermelon, cucumber, potato, soybean, wheat, corn and many others have been sequenced, but as VandenBosch notes, exploring those sequences to identify the genes that govern plant traits is an unexplored frontier.

Shawn Kaeppler’s own research, for example, is a window to both the complexity and opportunity that lurk in the genomes of plants. One of his interests is the complex of genes—involving anywhere from tens to hundreds of genes—that governs the root architecture of corn. Knowing more about the combination of genes that directs the plant to send shoots into the soil, it might one day be possible to engineer a plant that can send its roots deeper into the earth, providing farmers with a hedge against drought.

“Fifty to 70 percent of all maize genes are expressed in roots,” Kaeppler says. “Some control processes in all parts of a plant, and some specifically control root development and response to environmental stimuli.”

A gene of interest for Kaeppler and his team is one that influences root angle. “Altering root angle even five to 10 degrees can dramatically increase the rate that roots get deep in the soil,” as well as how much root biomass a plant lays down at depth, he explains.

Identifying those candidate genes and mutations of those genes means they can be selected and manipulated in the laboratory to generate plants with different root structures. At WCIC, those plants can be grown in quantity, their new qualities studied and, if promising, tested in the field. The goal, of course, is to provide a practical outcome that is useful to growers.

In plant science, numbers matter. The more plants you can grow to test a new genetic combination, the better, as there are so many variables in play.

“In many aspects of science, doing things on a large scale is critical,” says biochemistry professor Rick Amasino, an expert on flowering in plants. “To have WCIC in our capability is great. Large-scale transformation opens up a lot of possibilities.”

Amasino, who is also a member of WCIC’s scientific advisory board, views the center as an important new national resource. Individual labs, he explains, do not have the same capacity.

“This has the potential to be on a scale greater than any other university’s,” Amasino says. “Individual labs can’t generate the hundreds or thousands of transgenic plants needed to fully test certain hypotheses. Labs around the country and, hopefully, around the world can now do experiments they couldn’t otherwise do. There are so many opportunities out there.”

A Facility With Deep CALS Roots

The name is new, but the Wisconsin Crop Innovation Center (WCIC) holds a prominent place in the young history of agricultural biotechnology. The facility also has long and deep ties to CALS researchers and alumni.

Originally known as Cetus of Madison, Inc., the Middleton facility—owned by
the Cetus Corporation of Emeryville, California—opened in 1981 under the direction of CALS bacteriology professor Winston Brill. The Wisconsin Alumni Research Foundation (WARF) played a key funding role in the early days of the company.

Cetus of Madison, Inc. initially focused on evaluating and testing a wide variety of natural rhizobia species to better understand their role in nitrogen fixation and nodulation in legumes, with the hope of someday enabling maize to have that capacity.

As interest in biotechnology grew in the early 1980s, the facility’s focus changed to inventing and innovating ways to introduce genes into plants. In 1984, Cetus Corp. sold half of its interest in Cetus of Madison, Inc. to the WR Grace Co.—and thus the company name “Agracetus” was born.

Great discoveries followed. An electric “gene gun” and transformation methods developed at Agracetus revolutionized the plant transformation process. Many plant species were subsequently transformed, including tobacco, peanut, sunflower, soybean, maize, cotton, cranberry, canola, poplar, wheat and rice. CALS researchers Kenneth Raffa, Brent McCown PhD’69 and Elden Stang, as well as WCIC associate director Michael Petersen BS’87 (then still an undergraduate) and Richard Heinzen MS’74, collaborated with Agracetus scientists during that period. But that wasn’t the only significant research taking place. Other studies critical to agricultural improvement focused on cotton fiber quality, transformation process improvements, polymerase chain reaction (PCR) method development, insect and disease resistance and herbicide tolerance. A number of CALS faculty, including Michael Sussman, Richard Amasino and Andrew Bent, were highly involved in consulting with Agracetus in many of these areas.

In 1990, WR Grace Co. acquired full ownership of Agracetus. During the early 1990s, Agracetus ventured into research in DNA vaccines—using an improved “gene gun”—and contracted plant transformation services to others within the industry, including, most notably, the Monsanto Company. Collaborating with biological systems engineering professor Richard Straub PhD’80 (now CALS senior associate dean) and other CALS researchers, the company also worked on producing industrial enzymes in plants.

After successfully generating plants that eventually became commercial products
for Monsanto, including Roundup Ready Soybeans and Bollgard Cotton, the facility was acquired by Monsanto in 1996.

Over the next 20 years, Monsanto used the facility as its primary site for soybean and cotton transformation. Other R&D at the site included corn, canola, wheat, rice and alfalfa transformation, gene expression, molecular testing and seed chipping/genotyping.

The site was considered a “center of excellence” for Monsanto due to its highly innovative employees, high throughput transformation capabilities and ability to consistently perform above and beyond expectations.

In July of 2016, Monsanto relocated a number of remote functions back to its St. Louis headquarters in the interest of business consolidation. In the hope that the Middleton facility would continue to work toward the betterment of agriculture, Monsanto the following December donated it to longtime collaborator the University of Wisconsin– Madison, along with University Research Park.

Not surprisingly, given the long history of CALS involvement, agronomy professor Shawn Kaeppler BS’87 was chosen to serve as facility director.

A Tale of Two Cheeses

Many of the world’s greatest cheeses are made in Wisconsin. It’s a fact that begs the question: How do those cheeses get to be great?

A key ingredient is the Center for Dairy Research (CDR), based at CALS and operated with funds from dairy farmers, dairy food manufacturers and processors, and other industry partners. Located within a licensed, operating dairy plant on the UW–Madison campus, its facilities include a cheese pilot plant, a dairy ingredients pilot plant, a sensory lab, an analytical lab and an applications lab, all of which are available to cheesemakers and other dairy manufacturers for trial runs and testing new products. For experienced cheesemakers seeking rigorous additional training, CDR, in partnership with the Wisconsin Milk Marketing Board, offers a three-year program of courses and mentoring leading to certification as a Wisconsin Master Cheesemaker.

CDR’s experts boast hundreds of years of combined experience in industry and academia. Those experts have something else in common: Many grew up in the same milieu as the cheesemakers they work with around the state.

We are pleased to present here the success stories of two very different kinds of Wisconsin cheesemakers who availed themselves of CDR’s support and expertise.

Mexican Melty 

When milk is converted into cheese, science alone takes you only so far, says Tom Dahmen, a second-generation cheesemaker who manages the Chula Vista cheese factory near Browntown, in southwestern Wisconsin.

“I’m a big believer in heavy-duty science, but there is always a bit of magic in making cheese,” says Dahmen, who began washing cheesecloths at age 6. Intuition and experience also play a role, he notes.

At Chula Vista, those ingredients are combined to produce a string cheese called Oaxaca (wa-HA-ka), which received the Best in Class award in the Hispanic melting cheese category at the 2016 World Championship Cheese Contest in Madison. The CALS com- munity can take pride in this honor, because CDR helped Chula Vista create the cheese.

Oaxaca is a white, mild-flavored cheese used in many Mexican dishes. The cheese gets its name from the Mexican state where the style originated.

At the Chula Vista plant, named for its beautiful view of Lafayette County dairy farms, people work two shifts making two styles of Mexican cheese.

Chula Vista and V&V Supremo of Chicago were cheesemaking partners for decades. Last September V&V bought the plant, where employment has risen to 80, up from 34 about seven years ago.

Although Chula Vista purchased and sold Oaxaca cheese for several years, “We were never happy with the qual- ity, so we decided to move production in-house,” Dahmen says. “I had spent 14 years making a related style, but there were challenges to our ‘make,’ so we went to CDR. They helped us from the beginning.”

Starting in around 2010, Dahmen and Alan Hamann, V&V’s senior man- ager of quality control, began talking with CDR researchers about the details of fat-protein ratios, milk solids, chemis- try and pH.

“You have to control all of these factors even as the milk changes subtly from one truckload to the next,” says Hamann, who has more than 36 years of experience in the dairy industry.

Once the ideas were collated, they needed to be tested. At Browntown, each test would require 5,000 pounds of milk, Hamann says. Vats at CDR, however, would require only 500 pounds, reducing cost and eliminating errors attributable to running tests with different batches of milk. “At CDR, we could test several variables at once,” Hamann says. “Working at CDR drastically cuts your timeline and offers much more control.”

When the improved Oaxaca reached the market in 2015, Chula Vista was producing one or two vats per week. Now the company makes that much in a day.

Oaxaca cheese is produced using a procedure similar to that used for fresh mozzarella. Pasteurized milk is set (coagulated) and cut in a stainless- steel vat and then turned into curd slabs that are moved to a cooker-stretcher, a machine where heating and repeated folding links protein molecules, forming the familiar elastic product called string cheese.

The stretched curd is then formed into cylinders by six nozzles, cut to length and packaged for shipment to stores ranging from “mom and pops” to Wal-Mart, says Philip Villasenor, V&V’s vice president of manufacturing.

Beyond technical advice, CDR offers business consulting to the dairy industry, says Vic Grassman, CDR’s technology commercialization manager. “We help firms develop products and expand,” says Grassman. “I help with economic development financing, permits, workforce information and development.”

As employment tightens, particularly in rural areas, CDR links manufacturers with existing resources for economic development. “It’s not just ‘Develop the product and you are on your own,’” Grassman says.

But when you visit Chula Vista, it’s all about the cheese. Even though Chula Vista aims for a standardized, pure product, “Every vat is a controlled experiment,” says Dahmen. “We are predicting what is going to happen, and we are pretty accurate, but this is a living system, and unplanned things happen: A pump dies. A cooler dies. People don’t show up. But once you start a batch, you have to finish.”

Those snafus are familiar to both Chula Vista and CDR, says Dahmen. “The beauty of working with CDR is that they are heavy, heavy on science, but their people have all worked in the industry. They have this blend of science and art that you can only gain from experience. For our Oaxaca cheese, they greatly shortened the timeline to reach the product quality we were looking for.”

The collaboration with CDR also served as a rich educational experi- ence for Dahmen. Earlier this year he earned certification as a Wisconsin Master Cheesemaker for Quesadilla and Oaxaca cheeses.

Alpine Goodness

If you walk into Roelli Cheese Haus near Shullsburg in southwest Wisconsin, you’ll see plenty of succu- lent Wisconsin cheeses—but not Little Mountain, the company’s champion cheese. It lives behind the counter, with nary a sign.

Little Mountain, described by its maker as a “classic upland style from Switzerland,” is not contraband, but Roelli is practically running on empty after a “Best of Show” at the American Cheese Society contest last July. “We feel pretty honored,” says company owner Chris Roelli, noting that Little Mountain bested 1,842 other cheeses in the competition.

Although Roelli is a fourth-generation cheesemaker, in creating the recipe and honing the details of microbiology, timing and equipment, he got assistance from CDR. “For us as a small business, tapping the experience at CDR was invaluable,” says Roelli. “It accelerated our path to bring this cheese to the market, literally by years.”

Little Mountain requires at least seven months of careful aging to achieve its characteristic flavor, texture and rind. Aging occurs in an above-ground “cellar,” with cooling pipes along the walls. Forced air would waft microbes, threatening the cheese with spoilage.

Roelli’s great-grandfather, Adolph Roelli, immigrated from Altburon, Switzerland to Green County in the early 1900s. “He was a cheesemaker’s apprentice in different areas of the Swiss Alps,” says Roelli. “He settled here as a farmer and sold milk to a co-op, which offered him a job as head cheesemaker, based on his experience in Switzerland.”

Roelli says he’s been in and out of cheese factories all his life. “I watched my granddad make commodity cheddar,” says Roelli, but the factory closed shortly after Roelli got a cheesemaker’s license in 1989. “We weren’t able to compete.”

In 2005, unable to stay away from the family business, Roelli returned with “Cheese on Wheels,” a cheese plant mounted on an 18-wheeler.

The following year he started an artisanal cheese business in a new factory behind his store on Highway 11 east of Shullsburg, and started to envision a Swiss cheese that would go back to the family’s roots. In preparation, he says, “I went around and tasted as much Swiss mountain-style cheese as I could.”

Both Emmentaler and Gruyère were already produced nearby, and Roelli mulled a Swiss version of Parmesan before settling on an Appenzeller, a hard-rind cheese flavored with “washes” of brine as it ages.

He approached John Jaeggi, CDR’s cheese industry and applications coordinator, with some flavor profiles he was looking for. “I made a couple of batches here as total experiments, and we went to the CDR and made six batches to fine-tune the culture and process,” Roelli says.

In Jaeggi, Roelli found a particularly kindred spirit for this project. Jaeggi is a third-generation, Swiss-descended cheesemaker from Green County who, like Roelli, grew up in a cheese family. “If you look at the history of Wisconsin, a lot of cheese factories were family operations and the family was involved in all aspects of the business,” Jaeggi says. “The younger generation would start on the bottom floor, cleaning, sanitizing, packaging and working their way up.”

The initial conversations with Roelli, Jaeggi says, concerned flavor, texture and equipment. “We talked about aging, culture, the ‘make’ schedule. Chris came up to CDR and worked in our test vats, looking at cocktails of microbial cultures for different flavor profiles. Once we got close, we went to his plant two or three times to make the cheese, then optimized the make procedure to fit his plant.”

The cheese would be aged from seven to 16 months while being washed with a hush-hush recipe of salt, yeast and bacteria. The wash would break down proteins and fat to create the rind and desired flavor.

“Although artisan cheesemakers are pretty open in general, when it comes to world-class cheese, there are still secrets out there,” Roelli says.

Holding secrets is a point of pride at CDR. “To be able to draw from the knowledge base at CDR was invaluable,” says Roelli, who has earned certification as a Wisconsin Master Cheesemaker. “There is nowhere else you could get that. If John Jaeggi or Mark Johnson [a CDR cheese scientist] asks for help from someone in Europe, they will help. They don’t know me, but they know them.”

Someday the world’s top cheesemakers may start to know Chris Roelli, who has built his future atop his history and the cheese wisdom brought by his great- grandfather from Switzerland. “If you make something really good, people will find it,” Roelli says. “We entered competitions to garner some interest from places where we don’t normally get it. You don’t have to set the world on fire with advertising.”

Between the store and the cheese plant, Roelli Cheese Haus has five employees. Chris Roelli also runs a larger business hauling milk from farms.

Demand for Little Mountain exploded after the award in July, Roelli says. “We beat the world champ from last year, and three other American Cheese Society Best of Shows from past years. We have upped production for the end of 2017 as much as we can. I still have a list as long as my right arm wanting the next batch.”

Lactation Sensation

WHEN THE CITY GIRL decides to study lactation, she must first learn to milk a cow. Laura Hernandez, an assistant professor of dairy science at CALS, remembers that lesson.

Her tutor that day was Jessica Cederquist, then a fellow grad student and now CALS herd manager. “People who have never milked are used to what you see in the movies,” Cederquist explains. You know the choreography: grab a teat, pull down, milk squirts into the bucket. But that technique simply squeezes milk back into the udder. And just about everybody makes the mistake. “It is a rite of passage to stand back and laugh,” she admits.

“She thought it was very funny,” Hernandez recalls. “I think that was the beginning of a very good friendship.”

The milking got a little crazier once Hernandez ramped up her inquiries into how lactation works. Her first experiments required milking two halves of the same cow, comparing milk production. Because she was pairing the front right with the back left and vice versa, she had to replumb two half milkers, using a surplus of hoses and buckets. She’d also recently had knee surgery.

“You’re already kind of crowded in there and now you’ve got her fancy contraption and all of her buckets and a big old knee brace,” says Cederquist. And it’s a waterbed stall, so every time anybody moves, the floor moves, and the buckets yaw precariously. “She’s darn near laying on the floor under the cow, trying to figure out how she’s going to get this thing to stay on.”

Hernandez is still making things unusual for Cederquist. Lactation is a delicate enough phenomenon that the typical dairy farmer puts animals who are in the late stages of pregnancy on vacation. This is exactly when Hernandez needs to poke and prod, monitor and manipulate.

The hassle seems worth the reward: Her exploration of the role of serotonin in lactation has the potential to significantly improve animal health and boost milk production. There may also be profound lessons about the role of serotonin in human health. While seratonin was once considered the miracle molecule of mental health, Hernandez is helping unravel its role in many more parts of the body.

“There is still an infinite box of things it probably does that we can’t understand,” says Hernandez. Which is all the more interesting because it’s such a simple molecule, just a modified amino acid. It’s as if a Lego block were able to control a nuclear reactor. “I really am just completely fascinated by how a modified amino acid can regulate what feels like the universe at times,” Hernandez says.

On the road between Hernandez’s hometown of El Paso, Texas, and the New Mexico State University campus in Las Cruces, a line of dairy farms stretches across the landscape. Despite her urban upbringing, the cows fascinated her. “As an athlete I was like: how does she do that?” recalls Hernandez, then a scholarship swimmer. “I just thought they were really cool animals, what they could do from a biological standpoint.”

Drawn to biology, Hernandez chose animal science over straight biology because she was more interested in working with mammals than with crabs and nematodes. But her real immersion didn’t begin until her senior year, when she transferred to New Mexico State from Iowa State University. In Ames her swimming schedule had kept her out of the lab, but that changed when she got to Las Cruces.

“I loved working in the lab,” says Hernandez. “That was where I found my home.” When she couldn’t decide between professional schools, she continued at New Mexico State to earn a master’s degree in animal science and toxicology.

In 2005 she started her doctorate at the University of Arizona with Bob Collier, a physiologist in the dairy sciences. He was interested in how genes interacted with the environment, and lactation was the ideal process to study: genetically programmed, but initiated and controlled by changes in the environment of the cow.

The year before Hernandez arrived, the small world of lactation science had been upended by the unexpected discovery that serotonin, long considered simply a neurotransmitter, also had a role in regulating lactation. Collier reached out to Nelson Horseman at the University of Cincinnati, where the discovery had been made. Horseman studied breast development, but his central interest was breast cancer. Collier offered his dairy expertise and suggested that they collaborate on expanding this discovery from the mouse to the cow.

Hernandez undertook the research for her dissertation, supervising many of the active experiments. Deeper she went, her work encompassing an intense collaboration into the complex molecular underpinnings of milk production.

After finishing her Ph.D. she began a postdoc in Horseman’s lab. One day in Cincinnati, Gerard Karsenty, a geneticist visiting from Columbia University, presented his research involving gut serotonin, calcium and bone mass. Afterward Hernandez turned to Horseman and wondered aloud: If gut serotonin had a role in bone mass, could this also help explain its role in lactation?

Nursing typically requires more calcium than diet alone can provide, and the difference comes from the mother’s bone. A nursing mouse will lose up to 20 percent of bone mass in 21 days. Human mothers can lose 6 to 10 percent of their bone mass over six months. Studies in West Africa and Korea suggest that the longer a woman breast-feeds, the lower her bone density.

It’s not surprising that serotonin might have more than one role in the body. Along with dopamine it’s the oldest known hormone, and nature loves to reuse its creations. In fact, serotonin first evolved in plants. Plants have no nervous system, so it couldn’t have been a neurotransmitter. How a simple molecule engages in complex processes is by acting as a molecular key in many different cellular locks. Scientists have now identified 20 different serotonin receptors. The mammary gland alone has five.

So how to uncover serotonin’s role in withdrawing calcium from bone? Scouring some old genetic assays, Hernandez found a likely ally: parathyroid hormone-related protein (or PTHrP). Her initial tests were so strong that she suspected her equipment was off.

But further experiments confirmed that serotonin was causing an increase in PTHrP in the mammary gland during lactation. This, in turn, was a key signal liberating calcium from bone for the mammary glands.

Hernandez’s research portfolio made her an obvious match when a position opened at CALS. As a newly hired professor in 2011, her first question was obvious: Could she leverage our knowledge of PTHrP in the dairy cow?

Lactation is hard, and one of the biggest problems faced by dairy farmers is the “transition cow,” a cow in the three weeks before and after calving. Between the physiologic stress of birth and the metabolic stress of commencing lactation, for the first 20 to 30 days of lactation the cow is expending more energy than she can take in.

Calcium complicates things, as it takes a couple of days to activate the mechanism that borrows from the bone. Sometimes that leads to a calcium deficit—or hypocalcemia, also knownas milk fever. Because calcium is critical for biological functions, assisting with everything from muscle contraction to immune function, a shortage can lead to a variety of potential health problems including ketosis, displaced abomasum and retained placenta. Gut issues can arise because the intestines aren’t contracting. Reduced immune function leaves the cows more susceptible to mastitis.

“That’s a precarious time frame for them,” Hernandez says. “If you have a calcium problem, other issues compound.”

It’s a daily concern for dairy farms. Even on a very good farm, 3 to 5 percent of the animals are going to wind up with milk fever. Scaled up to a 10,000-herd farm, that means one or two affected cows every day.

“Not every farmer is going to automatically relate to Hernandez’s deep molecular work,” says herd manager Jessica Cederquist. But put it in terms of milk fever and the transition cow, and “every dairy farmer on the planet knows what that means,” she says.

With startup money tight and a big idea, Hernandez developed an ambitious research agenda. She found a collaborator in Jimena Laporta, a graduate student fresh from Uruguay. Laporta read the plan and committed the very next day. “We were throwing all of the chips on the table and hoping for a win,” says Hernandez.

The idea was simple: Could you boost PTHrP levels with nutritional supplements? They fed rats two amino acids—5-hydroxytryptophan (abbreviated as 5-HTP) and straight tryptophan. Both are chemical precursors in the synthesis of serotonin.

They began with rats, and feeding was the easy part. The hard part? They also had to milk them. Forty-five rats. Every day. How do you milk a rat?

After knocking it out with sleeping gas, you inject a minute quantity of the hormone oxytocin. A small suction device evacuates the teats; each animal has 10. It was a time-consuming, two-person job. Hernandez and Laporta sacrificed weekends and postponed professional travel. Eventually they got the process down to about an hour and a half.

The 5-HTP worked. Then they confirmed that it works in the cow via IV infusion. Now the lab is working on developing a cow feed that accomplishes the same thing.

Meanwhile, on the molecular level they were focusing on how the serotonin was actually affecting the mammary gland and how it translated into the chemical signals that drive bone resorption. In addition to the PTHrP they identified a gene—already nicknamed sonic hedgehog—as another link in the chain in collaboration with researchers Chad Vezina and Robert Lipinski at the UW–Madison School of Veterinary Medicine.

“It’s a very big picture of a very small molecule,” says Laporta, now teaching at the University of Florida. “Nobody knew that serotonin could do all these things. I think we opened a black box.”

Repeat: lactation is hard. Hernandez became a mother in the first year of her professorship, and nursing was as fulfilling as it was excruciating. She was lactating, she was teaching about lactation, she was manipulating lactation. Under the grueling stress of a new research program she took only nine days of maternity leave.

One day in mid-February her husband came home to find Hernandez crying on the bathroom floor. She couldn’t find time to pump, and her hair was falling out. He suggested it might be time to stop nursing. She’d made it seven months under a colossal workload. They still had some milk stored to facilitate transition to the bottle. “But I want to make it a year,” Hernandez objected. “I’m a lactation biologist! I must!”

“It was so hard,” she reiterates. “It’s made me even more of an advocate for helping women after they give birth. That’s where my biggest interest is: The mother’s ability to deal with lactation and to do so healthily for herself while also taking care of her baby.”

And so Hernandez has forged into human health. As the role of serotonin beyond brain chemistry continues to unfold, obvious questions arise. Selective serotonin reuptake inhibitors, or SSRIs, now dominate the antidepressant market and include such household names as Prozac, Paxil and Zoloft. Among their side effects is a decrease in bone density. Nursing also decreases bone density. With 12 percent of pregnant women taking SSRIs, does the combination of SSRIs and nursing set these women up for severe bone health issues later in life?

Most studies that looked at nursing and SSRIs focused on the infant. “Almost nothing out there looks at the long-term implications for the mother,” reports Sam Weaver, a third-year Ph.D. student in Hernandez’s lab. Weaver began as an undergraduate in the lab, assisting Laporta with her milking. Now Weaver supervises her own mouse dairy as she tries to untangle the precise impact of SSRIs on lactation and the health of the mother.

Weaver harvests more than milk. The mice are dissected with precise determination as blood, mammary glands, kidneys, intestines and bone tissue are examined for health and their reactivity to serotonin. Their femur bones are sent off to a collaborator in Boston for specialized imaging.

“Can we somehow help women breast-feed but also stay on their medication, and help them avoid some of these long-term bone issues?” asks Hernandez. She hopes to begin working with human populations soon.

Now that the lab has characterized the complexity of serotonin in lactation, the team is trying to get a handle on its role as one of the body’s master regulators. Only about 2 percent of serotonin actually resides in the brain; the vast majority circulates throughout the rest of the body. “We’re finding it popping up in all sorts of places,” says Weaver.

A newer project is working on yet another serotonin-lactation connection. Obese women tend to have higher serotonin levels—and they also have a harder time initiating nursing. This suggests yet another crucial role for serotonin as a regulator of energy balance in the body. By unlocking its role, they hope to find a way to make nursing easier for these mothers.

The legacy of Wisconsin is so milk-soaked it can be hard to remember that lactation still holds mystery and marvel. It’s a unique biological process that has given up its secrets slowly, and there is still much to learn. Experiments with a wide variety of mammals have shown that as long as you keep removing milk, the gland will keep making it.

Though she’s unlocked some of the secrets behind this apparent superpower, Hernandez remains entranced: “It just fascinates me that it can continue to do that.”

It’s not a stretch to call lactation one of the more significant developments in the evolution of life on this planet. The expanded ability to feed our young has allowed mammals to adapt to a wide array of variations in our environment. “Keep the baby alive,” says Hernandez. “I think it ties back to that, making us better mothers.” Our human accomplishments are stamped with an indelible mammalian signature.

Hernandez’s peculiar dairy, with its few hundred mice and few dozen patient cows, keeps producing under the labors of a handful of motivated students. “Sometimes it’s overwhelming, and it feels like we’re not getting anywhere and we’re not going to get anywhere,” Hernandez says. “Because with every answer comes another question.”

Even as she continues her fine-scale investigations, Hernandez hopes that young farmers can go back to their dairies and incorporate some wonder into our conversations about animal agriculture.

As Hernandez and dairy farmers know, when it comes to a cow’s well-being, milk is a marker.

“If cows are not being fed properly, or taken care of properly or housed properly, they are not going to make a lot of milk,” Hernandez says. “That’s a basic mammalian response. That should tell you something about the welfare of the animals.”

Students on the Cutting Edge

CALS undergrads are an impressive bunch, eager to get the most out of their time at college. As they tackle the challenging coursework required for their degrees, many also pursue research and internship experiences to augment their education—and help prepare them for their future careers.

Such experiences can be found on campus and off, with companies, nonprofits and governmental agencies. Some are summer gigs, others run year-round. The work students perform in these roles is as diverse as the disciplines that CALS covers: basic biological research, crop management trials, marketing campaigns, food product development, nutrition-focused meal planning and so much more.

“These experiences are important because they allow students to test-drive potential career paths, to get a true sense of what they would be doing in a job setting, which in many cases can’t be grasped from what they learn in the classroom or read in a book,” says entomologist Rick Lindroth, until recently associate dean for research at CALS.

They also help CALS students stand out in competitive environments. “When organizations review candidates for jobs and graduate school applications, it’s the transferable skills gained from research labs, internships and similar experiences that set students apart from each other,” says Megan O’Rourke of CALS Career Services.

CALS prides itself on being a great college for such experiences, a place where researchers are eager to have undergrads come work in their labs. CALS Career Services maintains strong connections with state and national organizations looking for talent and helps place students in internships—and jobs.

At the most recent UW–Madison Fall Career Fair, there were more than 110 organizations recruiting students from CALS disciplines, notes O’Rourke.

For researchers and organizations that hire CALS student researchers and interns, there are a number of benefits from investing in young scientists and professionals.

According to Lindroth, who has had a number of undergrads in his lab over the years, they help move projects forward, including some that might not otherwise get done. “And they bring a level of energy, enthusiasm and wonder that is refreshing,” he notes.

To illustrate the benefits of these experiences for students, mentors and organizations alike, here are some recent research and internship experiences of six CALS students.

Name that plant!

Thanks largely to the efforts of Saige Henkel, visitors to Allen Centennial Garden who ask themselves “I wonder what plant this is?” have a new way to find out.

Allen Centennial Garden is a gem on the CALS campus, a resource for students, area horticulturalists and home gardeners alike. The 2.5-acre garden features 21 mini-gardens, from English to rock to native Wisconsin, showcasing more than 1,000 kinds of plants. It’s no wonder that most visitors need some help in identifying them.

Henkel, a junior majoring in landscape architecture, led the effort to assemble the garden’s new Online Plant Database, an interactive public platform where students and community members can search through the garden’s entire plant collection and find photos and key information about the plants.

“People can use specific filters to find exactly which plant they are looking for. It’s a great tool for when you’re in the garden on the weekend and staff aren’t around to identify plants for you,” says Henkel, who created more than 800 of the database’s 1,100 entries so far.

Henkel started interning at Allen Garden in spring 2015. Her career plan involves joining a landscape architecture firm—preferably one that specializes in planting design and sustainable urban development—where she will likely spend most of her time in front of a computer doing design work. Prior to this, however, she knew she wanted some kind of practical horticultural work experience.

“I wanted to get my hands dirty and learn more about the physical maintenance of the plants I’d be putting in my designs,” says Henkel.

Allen Garden provides a number of opportunities for undergrads to have meaningful experiences. When garden director Ben Futa joined the garden in 2015, he created six year-round “student director” positions.

“Student directors take an active role in everything we do, from planning public programs to envisioning new horticultural displays. This real-world experience is preparing them for success in a competitive job market,” says Futa.

Henkel was in the first cohort of students that Futa hired. She’s had a number of different responsibilities at the garden since she joined, including leading a major garden design project. She developed a design for a new bulb lawn in the English garden—and then got to plant it and see it bloom last spring.

“I’ve definitely beefed up my horticultural knowledge, which was my original goal in applying for this internship,” notes Henkel. “Working here, I’ve also started to realize that landscape architects work on a variety of projects, from hardscape plazas to public garden spaces, and it’s really shown me the variety of possibilities that I’ll have with my degree.”

Two ways to publish

Eddie Ruiz is a go-getter. As a freshman, he took a student employee position in the lab of Dr. Timothy Kamp, a cardiology professor and stem cell researcher. He started out maintaining equipment and cell lines. Over time, as Ruiz learned more about the lab’s research program, he started contributing to various research projects, including helping to develop a protocol to produce a special type of heart cell, called a cardiac fibroblast, from human pluripotent stem cells.

Ruiz, a genetics major, quickly realized he’s not the only undergrad doing meaningful research on campus, with significant results to share. In fall 2015, he teamed up with Stephanie Seymour, a molecular biology and economics double major, to give more undergrads an opportunity to go through the publication process and share their findings. The duo founded the Journal of Undergraduate Science and Technology (JUST). Student research journals are already popular at other research universities such as Caltech, Harvard and the University of Texas at Austin.

“People tend to think undergrads are working on small parts of a research project. While this is definitely true, there are also many students like Stephanie and me who are working independently on research projects that justify greater attention,” says Ruiz.

Ruiz and Seymour, serving as coeditors-in-chief, assembled a team of 30 undergrad volunteers to put together the journal. Ruiz calls it “an incredibly challenging yet rewarding leadership experience.” The group tackled—from scratch—the tasks of careful review of scientific research, editing, design, marketing and publication production. The first issue came out in May 2016, while the second appeared in December.

“JUST has given our editors—who are all UW–Madison undergrads—a unique opportunity to learn how to dissect and critique an array of scientific manuscripts. JUST has trained undergraduates how to peer-review scientific papers and enabled students who are passionate about art and science to explore this intersection through the design of our publication and website,” says Ruiz. JUST’s website, justjournal. org, which houses its online publications, has been visited more than 10,000 times in the one year since its creation.

And JUST is not the only publication experience Ruiz will have during his time at CALS. After attending a scientific talk with fellow members of Tim Kamp’s lab, Ruiz came up with a research idea and took it to Kamp.

“His research project was largely motivated by a seminar in which he learned about 2-photon microscopy and its application to biological research,” says Kamp. “He knew the questions we were investigating in the lab and thought this technique could help us understand the matrix proteins that cardiac fibroblasts generate.”

Kamp’s group is in the process of preparing a scientific paper describing this project. Ruiz, now a senior, will be a co-author.

“It has been wonderful to see him master this somewhat challenging methodology and optimize data analysis,” says Kamp. “Eddie is an undergraduate driven to explore and understand, which will serve him very well in a future career in science.”

Driving Arlington ARS toward precision ag

Ryan Seffinga spent a good part of last summer in an ATV driving around the Arlington Agricultural Research Station. While it may sound like an aimless task, it was actually a key step in Arlington’s ongoing effort to adopt precision agriculture technologies.

Over the course of three weeks, Seffinga BS’16 navigated his souped-up ATV, which was outfitted with a GPS receiver, a cellular modem and a monitor, around each of the station’s 350 research plots, gathering field boundary data to input into the station’s new farm management system—which Seffinga also helped install.

“I helped set up a server at the station’s headquarters and installed a farm management program on it. This program helps automate data collection and makes it easy for those with access to view key data for any given field,” explains Seffinga, who was a summer intern at Arlington last year.

Now, monitors attached to the station’s equipment—including the forage chopper and combine—and located around the grounds can send crop yield, soil moisture and other key data directly into the station’s new program, where staff can assess the information, field by field.

This big project likely wouldn’t have come together last summer without Seffinga’s help, notes his supervisor, Kim Meyers, assistant superintendent at Arlington.

“As with any farm, there is never enough time in the day to get everything done,” says Meyers. “But Ryan got it all set up and got the pieces working together. He was a huge asset.”

Meyers expects big payoffs down the line. “With enough years of data, we can make educated decisions about where our research and management practices should go in the future,” she says.

Seffinga graduated this past December with a bachelor’s degree in biological systems engineering. On campus, he was involved in the American Society of Agricultural and Biological Engineers (ASABE) student organization, ASABE’s collegiate quarter-scale tractor design competition, and the Engineers in Business student organization.

He already has a position with John Deere as a product design engineer for hydraulic excavators, and he hopes to start his own engineering and sales business someday.

Seffinga says his time at Arlington shaped his goals and helped him realize the importance of precision agriculture. “

I now know that the agricultural industry is investing more money into the precision side of things,” he says. “By remaining involved in this part of the industry, I can expect tremendous opportunities to present themselves, especially in new product development.”

Improving food safety

As a freshman, Makala Bach had already figured out that she wanted to be a food science major. Tough decision over, right? Not so much.

“I soon found out that the world of food science is a broad one, and that I would have to narrow down my interests even further—and the Food Research Institute’s summer internship program seemed like the perfect way to do that,” says Bach.

The Food Research Institute (FRI), housed in CALS, is a premier center for the study of microbial foodborne pathogens. Outreach is part of the institute’s mission—helping communities, government agencies and companies identify and resolve food safety issues. Another component of FRI’s mission is education.

“We developed the summer undergraduate research program to provide students, who may or may not have been thinking of careers in the food industry, exposure to important issues in food safety,” says FRI director Chuck Czuprynski, who helped establish the program in 2012.

Participating students work on research projects, discuss food safety topics with campus faculty and take field trips to food processing plants to learn about their challenges.

For her program, Bach worked on a research project sponsored by the Wisconsin Association of Meat Processors with the purpose of helping Wisconsin meat processors improve the safety of their processes and products. With guidance from a number of FRI faculty and staff mentors, including Jeff Sindelar, Andy Milkowksi and Kathy Glass, Bach studied the growth of the foodborne pathogen Staphylococcus aureus on the surface of ham that utilized slow-cooking (aka thermal processing) procedures to assess the risk of toxin production by the bacteria. The results of this study will provide practical solutions for ensuring that slow thermal processing procedures used in many Wisconsin meat products (examples: bone-in hams and summer sausage) won’t result in food safety concerns.

Bach received a lot of guidance at the start. Her mentors helped her set up the experimental design. One of them taught her how to pipette. Another, how to make ham. Before long, however, she was working primarily on her own.

“We work very hard to make sure it’s a good first research experience for our students,” says Sindelar, a CALS professor of animal sciences and UW– Extension meat specialist.

And for Bach, it certainly was.

“During the first week or so, there were days and days of monotonous prep work. Everyone in the lab told me to just wait until I had data—that that’s when the exciting part would begin. And they were right,” says Bach. “There’s nothing more exciting than being able to draw conclusions that might actually have an impact, all based on work you’ve done.”

Bach ended up staying on at FRI working in the applied research lab to help finish the project. The team is planning to publish the results in a peer-reviewed food safety journal.

“Bach’s work will have a practical impact. It affects many meat manufacturers around the state and the nation,” notes Sindelar.

And there’s another positive outcome: Bach is now considering going to graduate school to study food microbiology.

Getting a global perspective

When Abagail Catania, as a freshman, attended a Career Fair run by MANRRS (Minorities in Agriculture, Natural Resources and Related Sciences, a national professional development society), she figured it was too early for her to land an internship. But a John Deere rep encouraged her to apply, and even gave her an hour to polish her resume before conducting an on-thespot interview.

“That employee took a leap of faith and allowed me to fix up my resume, and ultimately I was hired during the second-round interview stage,” says Catania.

That summer, Catania moved to Moline, Illinois to work as a sales and marketing intern for John Deere’s construction and forestry division in order fulfillment and logistics. One of her projects involved assessing the shipment and storage of large machinery being sent to five U.S. ports from Japan. In certain ports, older units were sitting in storage too long, taking up valuable space.

The work involved digging into five years’ worth of pertinent sales data, and, for Catania, it was exciting because it had a clear end goal: to help John Deere improve operations.

“As a student going through classes, we are assigned work with data sets, but we don’t see how it’s applied or how to pull it from an actual database. I was able to do this in my everyday work environment, and I was able to learn a great deal about different ways to analyze data,” says Catania, who is majoring in agricultural business management with a certificate in criminal justice.

The following summer Catania returned to John Deere for a second internship, this time as a global marketing intern with the company’s worldwide customer experience team. This position was perhaps a bit closer to Catania’s heart, as she has a taste for international travel and dreamed of someday working abroad.

The work put her in contact with employees in John Deere’s various foreign offices as she led an effort to revamp the company’s customer experience survey process.

“I had to effectively communicate with key stakeholders from all over the world to ensure they were all aligned on how the survey process should take place,” says Catania.

It was another great experience, one that provided Catania with valuable networking opportunities and solidified her good feelings about the company.

“The intent of our internship programs is to provide meaningful assignments providing value to Deere while giving students valuable real-world experience,” says Gary Hohmann, a manager of outbound logistics and order fulfillment to Brazil. He supervised Catania’s first internship.

“It is great to know that I have people at John Deere who are looking out for me and want to support my career,” says Catania, who wants to work for an agricultural company in sales and marketing or marketing communications after she graduates in spring 2019.

But first, she’s spending a year abroad. Catania spent the past fall semester studying in London, and now she’s interning and volunteering in Nkokenjeru, Uganda, at a children’s aid organization. There she assists in social work along with supporting the village’s agricultural practices. It’s a dream come true for Catania, who hopes to continue helping improve people’s lives around the world.

Better health for all

When Jordan Gaal graduates from CALS, he’ll be able to add an interesting line to his resume: “Legislative advocacy on Capitol Hill.”

Gaal, a senior double-majoring in life sciences communication and political science, traveled to Washington, D.C., last summer as an intern for the Wisconsin Area Health Education Centers (AHEC). He was part of a state delegation advocating on behalf of the National AHEC Organization, which seeks to enhance access to quality health care around the nation, particularly for rural and underserved populations.

“We visited the offices of Senators Johnson and Baldwin as well as Representatives Grothman, Ribble, Moore, Kind, Pocan and Speaker Ryan to talk about our program, how it benefits Wisconsin and why it should continue to be funded,” says Gaal, whose position as Wisconsin AHEC’s statewide communications assistant continued into the school year.

For Gaal, it’s been the perfect internship to help him make a significant academic transition. When he first came to UW–Madison, he wanted to be a biological sciences researcher, but then he quickly figured out that his true passion lies in communications, advocacy and policy work.

“My general duties are primarily communications and marketing,” says Gaal. “I’ve had the opportunity to create documents for legislators and lawmakers to emphasize the importance of public health issues, such as the need for more health care workers in rural areas. And before heading to D.C., AHEC helped prepare me to make legislative visits.”

The internship, which will last through the end of the academic year, also has Gaal working on news releases, social media, a quarterly newsletter, an annual report, website maintenance and more. The position comes with attentive mentoring and coaching as well as ample independence to pursue assigned projects.

Gaal’s supervisor, Keri Robbins, assistant director of Wisconsin AHEC, takes pride in offering meaningful internship experiences to undergrads. The trip to D.C., she notes, was particularly valuable.

“It will serve Jordan well in future opportunities to engage in advocacy or policy work,” says Robbins. “And AHEC benefited from having the student voice represented in our meetings.”

After graduation, Gaal wants to pursue two advanced degrees—a master’s in public affairs and a master’s in public health—and get experience at a federal government agency. He’s looking for a career very much in line with AHEC’s goals, one that will put him in a position to help improve access to healthcare in rural communities.

“It’s a cause I believe in,” says Gaal.

 

The Science Farm

ON A STILL AND WARM SUMMER MORNING, as scientists drive along the dirt roads that crisscross the Arlington Agricultural Research Station, the fields sweep in a green carpet to the horizon.

This land some 20 miles north of Madison was once part of the vast Empire Prairie, a sea of grassland that stretched south to the Illinois border. So high and thick were those grasslands, history tells us, that they could swallow a rider on horseback.

Named by settlers from New York in the 1830s for their home state, the prairie and its rich soils would prove to be ideal for growing corn and other row crops that are the mainstays of modernday agriculture. And today, the region is home to hundreds of farms, some of which date back a century or more.

It makes sense, then, that this place with its productive soils and old farms would also be home to a most unusual agricultural endeavor— a 26-year-old research project aimed at bridging the gap between past and future farming practices. It’s called the Wisconsin Integrated Cropping Systems Trial, or WICST for short.

On 60 acres of land at the CALS-based Arlington Agricultural Research Station, university researchers from a number of departments within CALS are doing big science with tractors and combines and manure spreaders. Clad in blue jeans and work boots instead of lab coats, these scientists are engaged in ambitious longterm research that is relying upon the study of the ancient soils of the Empire Prairie to point the way toward a sustainable agricultural future.

From this effort, started in 1989 by an idealistic and insightful young agronomy professor named Josh Posner, has come research that shows farmers can both run a sustainable farm and grow enough food to play a significant role in feeding a burgeoning world population. It is important, forwardlooking work at a time when many farmers face an uncertain economic future as well as changing climatic conditions that are only going to heighten the risks associated with bringing a crop to harvest or livestock to market.

“It’s among the most important farm-scale research being done in the UW system,” says Dick Cates PhD’83, associate director of the CALS-based Center for Integrated Agricultural Systems, the administrative home for WICST.

Cates, who also owns and works a managed grazing farm near Spring Green, praises WICST for the quality of its research as well as its unusual long-term approach to studying varied approaches to farming. He uses the research in teaching young farmers in a program he helped found, the Wisconsin School for Beginning Dairy and Livestock Farmers.

The science on sustainable practices particularly resonates with younger farmers, Cates says: “They understand long-term consequences.”

Research at WICST has been conducted on fields that are farmed using three cash grain and three forage-based production systems common in the Midwest. They include 1) conventional corn; 2) no-till corn-soybean rotation; 3) organic corn– soybean–wheat rotation; 4) conventional dairy forage; 5) organic dairy forage; and 6) rotationally grazed pastures. In 1999, Posner added plots devoted to the study of switchgrass and diverse prairie, which has allowed for grazing and bioenergy studies nested within the bigger experiment.

Toiling in their plots at Arlington, WICST researchers (including a steady stream of graduate students) have compiled an impressive archive of publications showing that sustainable farming practices, such as managed grazing and crop rotation, make sense from both economic and ecological perspectives.

They’ve studied everything from the effect of alternative crop rotations on farm profitability to soil health and carbon sequestration. They’ve tallied earthworms and ground beetles. They’ve analyzed weed populations. They’ve learned more about manure than you would suspect is possible.

Among their key findings:

• Organic- and pasture-based farming systems have been the most profitable cropping systems at WICST.

• Organic systems produced forage yields that were, on average, 90 percent of conventional grain systems and as high as 99 percent in two-thirds of the study years.

• Over a 20-year period, all five grain and forage cropping systems— except for grazed pasture—lost significant soil carbon to the atmosphere.

It’s a record that would have impressed and pleased the late Posner, who died in 2012. It is rare for any conversation about WICST not to lead eventually to Posner and his pioneering idea of a decades-long research project dedicated to the science of agricultural sustainability.

Posner, who held a Ph.D. in agronomy and a minor in agricultural economics from Cornell University, had conducted significant sustainability research from South America to West Africa before coming to the University of Wisconsin–Madison. His interest in agriculture grew from his work as a Peace Corps volunteer in Cote d’Ivoire, Africa, in a school gardening program.

Posner was hired by UW in 1985 to coordinate a UW research program in Banjul, The Gambia. He arrived in Madison in 1987 and began teaching and research in the Department of Agronomy. In 1993, he and his family moved to Bolivia, where he led a UW research program on sustainable agriculture for several years. From 1998 to 2001, he directed CONDESAN, an international agency based in Lima, Peru, to support sustainable mountain agriculture across the six Andean countries in South America.

Posner’s widow, Jill Posner, who still lives in Madison, recalled that her husband first started thinking about the project that would become WICST while working in West Africa with farmers who grew crops without the benefit of modern-day fertilizers and pesticides.

“There was a real link between what he was doing in Africa and the low-input systems he wanted to study here,” Jill Posner says. “It was one of those things that he always kept on the back burner. No matter where we were, he was always thinking about that connection.”

In 1988, Posner, a focused and persuasive scientist, would pull together the team that created WICST. His plan was to establish a research project that would compare sustainable land management practices, organic agriculture and traditional approaches. And the project would be ambitious in both size and duration. Research would be conducted on a scale that approximated the conditions on an actual farm. The science would stretch over not just a year or two but decades. Wherever Posner’s work took him around the world, he continued to oversee WICST, reviewing the plans and results and returning to Madison to connect with his research team at least twice a year.

That Posner would propose such an audacious project didn’t surprise those who knew him. He thought big, recalls Dwight Mueller, director of all UW Agricultural Research Stations— and Posner saw something else that many others didn’t fully understand at the time: The eventual emergence of organic and other conservation-minded farming as powerful and necessary trends.

“If you knew Josh, you might have had an inkling,” says Mueller regarding Posner’s long-range vision of field research that would meet the challenges posed by increasingly stressed resources. This was a time, Mueller notes, when crop farming largely meant planting year after year of corn with little rest for the soil. And organic agriculture was thought of by many as a hobby or possibly a passing fad.

“‘Organic’ was a dirty word when we started,” says Mueller.

Randy Jackson, a CALS agronomy professor and grassland ecologist who now leads WICST research and has been involved in the project since 2003, says the crop experiments played an important role in bringing science to bear on organic and other sustainable practices. For such practices to become more widely accepted, it was important to demonstrate that these grain and forage production systems could yield as much as conventionally managed systems in most years, he says.

The two main questions posed by Posner are still in play at WICST, says Gregg Sanford, a research scientist in the Department of Agronomy who has worked on WICST since joining Posner’s lab as a graduate student in 2004: Whether organic agriculture would be able to provide enough calories to feed the world and whether agroecology, or sustainable farming, would be embraced as economically feasible.

Key to the project was its scale, its focus on the long horizon and its collaborative nature, Sanford explains while driving along the project’s dirt lanes.

Conducting the research on the scale of an actual farm-sized operation in large plots has proven a boon, Sanford says, because it lends more validity to the science. Farmers tend to take the results more seriously when they know that the research had to be conducted in the face of the same challenges they face—everything from bad weather to insect infestations to equipment breakdowns.

This element of the research project becomes immediately clear on a visit to Arlington. There is little doubt that this is a working farm with its crops, grazing livestock, and sheds and barns, where begrimed farmhands coax tractors and cultivators and other equipment into working order.

The true-to-life nature of the research is strikingly apparent in annual reports that are similar to the notes kept by scientists in their laboratory notebooks but refer instead to the vagaries of storm and drought and insect scourges.

In a report from 2011, for example, Posner and researcher Janet Hedtcke reported “unseasonable cold well into May resulting in delayed start to the cropping season.” We find out that “in late September, strong winds knocked down a lot of corn, especially the organic corn, which was tall, had big ears way up high, and thin stalks,” they wrote, referring to a particular cropping system treatment.

Or there is the 2012 report, in which Hedtcke laments that crops and livestock endured extreme heat and drought. “Springtime,” she noted, “arrived early with temperatures soaring to above 80 for eight days in March.” Then one can hear the relief of a real farmer when she writes that, after a dry June, “an unforgettable and precious soaking rain came on July 18.”

Such challenges make conducting the research much like farming itself. “We’ve had years where we’re trying to get manure applied and it starts snowing on us,” Sanford says.

“We’ve had years where we’ve had complete crop failures because of the rain.”

But there is a twist, of course. The harvest at Arlington isn’t just of crops but also of science. A lost crop year represents a loss of crops, but it also provides a critical piece of data in a realworld experiment that shows how risky growing particular crops can be.

Even so, the length of the project has allowed researchers to weather the ups and downs. And the many years of data collection have paid off in ways that traditional science, conducted over periods of months or maybe a year or two, has trouble duplicating.

“It has shown the value of a longterm project,” says Mueller. “That can’t be overestimated. There are things you learn only by having a trial for a long time.”

Jackson says such long-term research is crucial when studies involve dynamics that unfold over a period of years or longer. He cites climate impacts as an example.

“It allows us to separate the vagaries of interannual climate variability and actual directional changes,” Jackson says.

Also, natural systems can be slow to respond to change, Jackson notes. Sometimes when a particular treatment is applied to a parcel of farmland, the result does not become apparent for two or three years or more.

Both the size and the length of the project have made the data more realistic, says Sanford, allowing scientists to account better for variables thrown their way by weather and other obstacles.

The value of research flowing from WICST has also been enriched by another characteristic built in by Posner with his original plan—the project’s collaborative nature. From the beginning, WICST has involved not just CALS scientists but also farmers, business owners, nonprofits and, notably, UW–Extension educators.

And, as envisioned by Posner, the research on WICST’s 60 acres at Arlington has been conducted across multiple disciplines in CALS, from soil scientists to grassland ecologists to entomologists.

Entomology professor David Hogg, along with his students, has spent long hours on WICST land sifting through the soils looking for links between soil health and insect health.

“It’s a great laboratory for doing this kind of work,” says Hogg. “And it’s unusual.”

Much of the work at the Arlington plots has focused on the soil, the single resource that farmers value more than any other for providing them a living and the world its food.

The science of soil has been approached from many angles by WICST researchers, with a number of surprising and useful results. Among the more eye-opening work has been the study of soil for its ability to store atmospheric carbon to help mitigate the changing climate. This characteristic has thrust agriculture and soil health and management into the climate discussion in a big way, according to Sanford.

The issue has driven much of Sanford’s work with WICST. In fact, the subject of his dissertation was land management and its effect on carbon in soil, where he comments that “the importance of soil in the global carbon budget cannot be overstated.”

Soil, Sanford reports, contains almost twice the combined amount of carbon found in the atmosphere and vegetation globally. Through his work with WICST, Sanford has been able to demonstrate which practices—using cover crops, for example, or increased crop rotation—help keep more carbon in place and out of the atmosphere.

As was Posner’s intent, the science coming out of the WICST fields has found its way into some of the most prestigious scholarly journals—and, importantly, into the hands of farmers. In the best tradition of the Wisconsin Idea, the shared knowledge from the trials has given farmers new tools for improving their yields, boosting the health of their soil, and protecting resources such as water.

Few are more aware of the power of WICST science than UW–Extension county agents, who spend their days in farm fields and barn lots working with farmers and sharing with them the latest knowledge gleaned from university research plots.

“Arlington research has helped greatly with crop production questions,” says Ted Bay, an agricultural extension agent in Grant County.

Bay cites a heightened interest among farmers in soil and water conservation and sustainable practices as reasons for sharing with them the results of the WICST research. More farmers, he says, are asking how they can use cover crops to protect and improve their soil in row crop production. Research from WICST has confirmed the value of using cover crops to protect soil, and provided information on integrating cover crops in grain production systems.

“Farmers are interested in the longterm impact of production practices that WICST research can help explain,” Bay says.

Gene Schriefer, the agricultural extension agent in Iowa County, in hilly southwest Wisconsin, says he’s had Sanford out to talk with farmers about the WICST research. He says farmers, who are nothing if not practical, tend to be more trusting of information that comes from a research program that has stretched over decades.

“Most research is over two or three years,” says Schriefer. “This research has been going on for nearly 30 years. That’s amazing.”

Schriefer sees particular interest among farmers in research that tells them how to return their soils to health and how to keep it in place in the face of storms that are both stronger and more frequent.

“We’re out here in the hills,” Schriefer says, “and any time it rains, there is not a clear stream out here. That’s our soil.”

Such growing consciousness in the farming community of the connections between agriculture and a healthy environment is heartening to researchers such as Sanford. For Sanford and other WICST researchers, it’s a testament to the power of Josh Posner’s vision all those years ago in distant Africa.

Sanford, tooling around the WICST fields on a summer morning in his beatup pickup truck, stops to show off a fading sign that dates back nearly to the start of the research. He notes the prominent mention of sustainability, agroecology and organic agriculture. Staffers, Sanford says, are reluctant to take the sign down despite its age because it is a poignant reminder of Posner’s hope and optimism.

“When Josh built this experiment, he was setting us up to understand how crop yields and soils respond not only to farm management, but also to a changing climate,” says Jackson. “These are critical questions whose answers should guide agricultural production in the 21st century.”

A Place to Belong

They sell holiday roasts and turkeys, fix lawn mowers and snowblowers for the public, grow and give away fruits and vegetables and volunteer in school classrooms. They present posters, hold fun runs and bike rides, give talks at national conferences and help manage wildlife around the state. They conduct community service and research projects around the world, doing their part to keep the Wisconsin Idea global.

And for the most part they do it themselves, with minimal assistance from faculty and staff.

These are just a few examples of activities conducted by members of student organizations, the hands-on social and preprofessional groups— nearly 1,000 of them are registered on the UW–Madison campus— that allow students to cultivate significant life skills while also creating community.

And they’re a vital part of student life at CALS. Sarah Pfatteicher, CALS associate dean for academic affairs, sees student orgs—along with such activities as internships, independent research and study abroad—as a crucial component for students to take their learning “beyond the classroom,” to make their time at CALS an experience they have tailored by pursuing their unique blend of interests.

They’re also a great way to make a big campus feel more like home, Pfatteicher notes. “We tell students, ‘You wouldn’t move to a city of 60,000 people and expect to suddenly know everything about the city,’” she says. “You pick a neighborhood within that city, and you get to know your neighbors, you get to know the restaurant on the corner.”

Of all the enriching activities available to students, Pfatteicher notes, the key advantage of student organizations is embedded in the name. “Student orgs are student-organized, right? They allow students themselves to identify interests, develop their own bylaws, set their own membership requirements—to come together and really be in charge of what they’re doing. That helps develop student autonomy and maturity in ways that other experiences maybe can’t.”

And let’s not forget they’re a lot of fun. Here’s what a half dozen student orgs at CALS are up to.

Helping Wild Wisconsin 

Once upon a time, elk roamed plentifully throughout the land that would become Wisconsin. By the late 1800s they had vanished from the landscape, victims of overhunting and loss of habitat. Efforts to reintroduce elk in northern Wisconsin have expanded in recent years—and the UW–Madison chapter of The Wildlife Society (TWS), the nation’s premier society for wildlife professionals, has been part of the effort.

Over the past three years, students have worked with elk herds alongside wildlife managers and volunteers. They put their muscles and passion into building fencing for large pens— one of them 1,600 feet long and eight feet high, encompassing four acres— used to contain elk being moved from Clam Lake to vacant elk habitat southeast of Winter. Recently students helped take down that fence and move materials to the Flambeau River State Forest, where a seven-acre pen will be built to quarantine elk brought in from Kentucky.

Laine Stowell, an elk biologist with the Wisconsin Department of Natural Resources, is grateful for the students’ assistance. “Their participation provides an abundance of enthusiasm and youthful strength,” notes Stowell. “We get a lot of work done in a short period of time, and all it costs us is food and lodging. We share our experience and time, they share their efficient effort, and we all accomplish excellent things for Wisconsin elk!”

Recent chapter president Lucas Olson BS’16 counts working on elk reintroduction among his most cherished TWS memories. As icing on the cake, he received a scholarship from the Rocky Mountain Elk Foundation in part for his student leadership in that effort.

Like many TWS members at UW, Olson is proud of the group’s special legacy in Wisconsin. “Wildlife management’s roots can be attributed to one of UW–Madison’s own—Aldo Leopold,” he notes. “Leopold’s tie to our department gives me a huge sense of pride. Leopold’s connection to TWS is one of great importance as well, as he was one of the first presidents as the society was taking off in the late 1930s. My involvement with TWS has been richer because of this, and has made my experience at UW– Madison extremely significant.”

In addition to hands-on wildlife management help, UW TWS activities include birding, helping with prairie burning and research projects, participating in regional and national conferences (including an annual quiz bowl at the national meeting), and holding an annual game dinner and fundraiser.

“I am in my major—wildlife ecology—because of the club,” says senior Daniel Erickson. “Through all the classes and field trips, I have made such a great group of long-lasting friends and connections with professors. TWS allowed me to realize that I have always had a passion for animals, nature and the great outdoors.”

Good Food for All 

Students who study nutrition understand the importance of healthy food. And, as members of the Dietetics and Nutrition Club (DNC), they are committed to sharing their knowledge and excitement about healthy food with people of all ages, from all walks of life.

Hanna Hindt participates in a club program with Porchlight, a Madison nonprofit offering emergency shelter and other support services for the homeless. “We get to talk with members of the community and answer questions about their own diet and food choices and those of their friends and family,” she says. “It’s a great way to apply what we’ve been learning in our nutrition classes.”

And, since Hindt hopes to have a career working with people for whom buying food is a constant challenge, the experience offers good professional training as well. “I’m able to get a feel for what a typical diet is for the low-income population—the daily challenges they face, and common health problems within this group,” Hindt says. “This background will help me approach and personalize nutrition counseling and offer reasonable and manageable options and advice within their limitations.”

Fellow DNC member Jackson Moran participates in club activities with REAP, a nonprofit that strengthens ties between growers, consumers and community institutions. DNC students help out at REAP events including Chef in the Classroom, where local chefs prepare meals with kids, and Family Food Fest, a community farm-to-school event. Moran has learned a lot about getting kids to eat their veggies. “It’s important for parents to be on board with a healthy diet, and to keep healthy foods available in the home,” Moran says. “Also, children will be much more likely to eat new, healthy foods when they can be involved in preparation, or have some interactive role.”

Other DNC activities include running exploration stations at Saturday Science in the UW–Madison Discovery Building and holding nutrition-themed Lunch & Learns—expert talks for faculty, staff and students. The club’s biggest annual event is “Dinner with Dietitians,” where club members pre-pare a meal for nutrition professionals at an evening of networking and panel discussion.

Recent DNC vice president Maria Gruetzmacher BS’16 helped plan that event, and cites that experience and many other DNC activities as pivotal to her personal and professional development.

“These experiences have taught me how to be more proactive and work collaboratively, and have strengthened my event-planning skills,” Gruetzmacher says. “With each event I participated in, I met new members, each with a different path and unique ideas. I was also able to meet practicing registered dietitians who allowed me to shadow them and provided meaningful advice.”

Ringing Success 

What makes a perfect dairy cow? It takes a trained eye to notice bovine features that hold great promise for the milking parlor. A tight udder, yes, but also the more subtle points: lean thighs, a sweeping rear slant to the ribs, a long neck, a fluid stride. And a skilled judge has to back up numeric scores by stating reasons in terms the dairy industry recognizes.

In other words, dairy judging takes some training. And that’s what students receive when they participate in the UW–Madison Dairy Judging Program, run through the CALS Department of Dairy Science. Students hailing from the Dairy State have a long, proud history of success, winning nearly a dozen national dairy judging team championships and scores of individual awards.

That success is extremely gratifying to coach Chad Wethal, who feels that the program offers students benefits well beyond academic credit. Dairy judging, he says, allows students to develop their decision-making and verbal communication skills—and it helps them build confidence.

“I am always amazed at how much they learn from each other,” notes Wethal. “There are many life skills that are built through participating in this program, but the key benefit is the camaraderie that is built within the team. Students can expect to form lifelong friendships with their fellow teammates.”

Students attest that the benefits run deep.

“When I entered the program I felt as though I saw cows very well, thanks to my 4-H dairy judging coaches and also my parents,” says Jordan Ebert, raised on a dairy farm, whose team placed second at a recent National Intercollegiate Dairy Judging Contest at World Dairy Expo. “Once I got into the program, my judging ability and public speaking expanded and improved. I added more terms and vocabulary, along with having more confidence and energy.”

And the rewards last long after students graduate. “You get to see all of your work and determination pay off when you realize just how much you have learned, not only about cows but also about yourself,” says Laura Elliott BS’12, reflecting on her team’s many honors during her dairy judging time at UW.

A Warm Welcome 

It can be tough to attend a school where you’re a racial or ethnic minority—and even tougher to choose a major in which others of your background are rarer still.

Enter “Minorities in Agriculture, Natural Resources and Related Sciences”—MANRRS for short—a national professional development society with a vibrant student chapter based in CALS. Through regional and national conferences, scholarships, competitions, service activities and development opportunities that begin in middle school, MANRRS offers a warm welcome and support to students who might not otherwise see themselves in STEM careers.

“On a social level, MANRRS allowed for me to meet and be connected with individuals who looked like me working on higher degrees in academia,” says Maya Warren PhD’15, a longtime member and past national officer of MANRRS. “On a professional level, MANRRS has allowed me to hone in on my leadership skills in ways that I would have never expected.”

Warren is now a lead food scientist, aka “tastemaster,” with the food franchising company Kahala Brands, focusing on their portfolio brands Cold Stone Creamery and Pinkberry. She became a highly visible face of UW– Madison—and a role model of grit and grace for MANRRS members—when she and fellow food science grad student Amy DeJong two years ago won “The Amazing Race,” a reality show on CBS with a $1 million prize.

For many students, MANRRS comes to feel like a second family. Abagail Catania, a junior majoring in agricultural business management, joined Junior MANRRS while attending the Chicago High School for Agricultural Sciences, a public magnet school. Over the years she went on to hold numerous leadership positions, including serving as UW chapter president beginning in her freshman year and also serving as a national officer.

“MANRRS has had a huge impact not only on my undergraduate experience, but on my life in general,” Catania says. “It provided me with a lot of support not only academically but professionally and personally as well. MANRRS has contributed to many of my successes while attending UW, including being offered an internship with John Deere as just a freshman.”

MANRRS secretary Emma Lopez, a senior food science major, credits MANRRS with helping her land an internship with Covance, a contract research organization providing drug development and animal testing services. Covance is one of several companies that regularly recruit MANRRS members.

“Covance values students who demonstrate a personal investment in their learning and development through participation in organizations such as MANRRS,” says Rebecca Verhulst, a senior manager with Covance in global university and diversity relations. “In our experience, the diverse perspectives and experiences of MANRRS’ talent helps us to think in new, different and insightful ways, delivering innovation in every patient room, at every lab bench and every client meeting.”

Meet Your Major 

Here’s a little-appreciated fact about biochemistry majors: they have to be a bit more patient than most students. A long run-up of science prerequisites keeps most of them busy their freshman and sophomore years, so that often their introduction to biochemistry gets pushed back.

They can help bridge that gap by immediately joining the Undergraduate Biochemistry Student Organization (UBSO), which brings biochem students together for faculty presentations and discussion, leads on job and internship opportunities, preprofessional advising, national conference attendance and “just fun” stuff like Picnic Point bonfires and ice-skating socials.

“It’s important for students to begin understanding their major as soon as possible,” says biochemistry professor Doug Weibel, who frequently gives talks for the group. “The biochem department has been actively reorganizing the curriculum to introduce biochemistry courses earlier. UBSO provides a complementary resource to our majors.”

It’s a resource that students appreciate. “UBSO is the one organization where everyone understands what you’re experiencing academically, as a biochemistry major, in terms of classes, research and applying for grants and internships,” says recent UBSO academic chair Quinn Vatland BS’16. “This meant that it was really easy to receive advice on which classes to take, what scholarships to apply for and even the best way to study the trp operon. The UBSO meetings themselves also let me get a lot of professional advice—resume workshops, career advising and research tips—but they are also pretty casual, so I made friends, too.”

Members take the “pay it forward” approach to heart when it comes to mentoring younger students.

“Every time there is a scared little freshman or sophomore that walks through the door and wants advice about getting into research or about classes, and what to take and how to study, I love it,” says recent UBSO president Amal Javaid BS’16. “I love answering questions and reassuring people that I’ve been through what they are going through, and it will be okay. Past officers did that for me when I was an underclassman, and now I take a lot of pleasure in giving back. This year we, as a board, have helped at least five underclassmen find research jobs, and that is definitely super refreshing and rewarding.”

Faculty members do some serious mentoring as well. Every year biochemistry professor Michael Cox takes a group of seniors to the annual meeting of the American Society for Biochemistry and Molecular Biology (ASBMB), where they compete in an undergraduate research poster competition.

“Our students always do very well,” Cox says with pride. “Our students this year represented less than 5 percent of the some 230 students from across the country in the competition. However, we took 25 percent of the prizes.”

UBSO is in the process of reorganizing to become a student chapter of the ASBMB, Cox notes. “This will make it part of a national organization, with a number of benefits,” Cox says.

Team Temptations 

They bear names like “Blissful Bites,” a vanilla yogurt nugget coated with crunchy oats, flax and puffed rice; “Pixie Dust,” freeze-dried, powdered fruit that becomes a smooth, nutritious drink when mixed with milk or water; and “Walking Wok,” a chicken and vegetable stir-fry wrapped in a gluten-free tortilla.

But as fun and delicious as these treats sound, they required the CALS student teams who created them to draw on everything they’d been learning in food science. The products were developed to compete in national food industry contests sponsored by Disney and Mars, Inc. And they had to meet exacting standards on everything from nutrition, taste and texture to food safety, shelf life, pricing and market appeal.

“Being on a product development team helped develop my critical thinking skills while teaching me more about the industry and how to be flexible, because in the competitions you are responsible for all aspects of the product,” says Amy Parr BS’16, who helped develop the Walking Wok. “It gives you at least a little bit of insight into everything.”

The food product development teams from CALS regularly take top prizes for their work—and no one is more impressed than food science professor Rich Hartel. “We teach them the basic science for them to apply—but other than that, these teams are completely student-driven. The students form their own teams, develop their own products and submit the product ideas to the competitions.” They also present their products at national conferences, where they have an opportunity to network with industry professionals.

These professionals, too, are impressed by CALS students, according to Tracy Matteson BS’99, an associate principal scientist at the Kraft Heinz Company who spent several years as a company recruiter and as a student competition judge— and who participated on food product development teams while at CALS. “The only thing that looks more impressive to an employer, beyond demonstrating strong communication and leadership skills, is being an engaged member of the product development teams,” she says.

Learn more about these and other student organizations at https://win.wisc.edu/organizations. 

The Mysteries of Mitochondria

Imagine having your car towed to the shop for unknown repairs, and watching a trusted local mechanic pop the hood and take a ponderous look inside. Minutes pass as he runs a gauntlet of software and fluid checks, and pokes around the hoses, belts and cords. He finally emerges with a strange-looking broken part in his hand.

“This might be the culprit,” he says. “But honestly, I’ve never seen a part like this before.”

Dave Pagliarini can relate to this feeling. As an associate professor of biochemistry, Pagliarini studies engines of an entirely different stripe—engines called mitochondria, which power biological life. These tiny, grain-shaped organelles reside inside virtually every plant and animal cell type, and perform the critical task of breaking down nutritional elements and converting them into energy for basic cellular function.

Pagliarini says that only two decades ago, science had all but closed the book on mitochondria, assuming all the important pathways and processes had been worked out. But lately, the field of mitochondrial research is being defined more by how little we know about their complex role in maintaining health—and their connection to literally hundreds of diseases when things go haywire.

As one measure of this great unknown, Pagliarini points to “orphan proteins”—more than 300 proteins associated with mitochondria that still have no defined function. In a mechanical sense, they are parts without a defined purpose. A big focus of Pagliarini’s research today is linking these orphan proteins to their rightful homes and understanding how their dysfunction affects disease.

But as a University of California, San Diego graduate student in the early 2000s, Pagliarini didn’t have mitochondria anywhere on his radar. He was studying a group of proteins involved in cell signaling when he made an entirely unexpected discovery: One of those proteins traced directly back to mitochondria. Later, as a postdoctoral researcher at Harvard Medical School, he produced a seminal work on identifying all mitochondrial proteins, published in the journal Cell in 2008, which has been cited more than 1,000 times.

“That set off a whole new direction for me,” Pagliarini says. “To find something that no one expected to be there made me fascinated about what else we didn’t know. And as we began to realize there was a lot we didn’t know, I just saw a lot of opportunity.

“That’s when I became a ‘mitochondriac,’” he says with a laugh.

Mitochondria consume about 95 percent of the oxygen we breathe to make a chemical substance called ATP—or adenosine triphosphate—that is the “chemical energy currency” our bodies use to power cellular processes.

But “cellular powerhouse” is only one important function of mitochondria. For example, mitochondria are recognized as key players in cellular signaling and cellular apoptosis, or programmed cell death. They also appear to play a significant but not fully understood role in certain cancers, Parkinson’s, Alzheimer’s, diabetes and autism. And their composition varies markedly across tissue types—meaning there are many places where things can go awry.

“There are many different ways to break machines like mitochondria,” he says.

The Pagliarini lab focuses on establishing a fundamental understanding of mitochondria, with the recognition that we can’t cure what we don’t understand. There is a dire need to develop therapies for people who suffer from mitochondrial disease, which occur in 1 in 4,000 people and can be fatal or have devastating health consequences.

“There are so many diseases that are rare individually, but collectively affect lots of people,” Pagliarini says. “These are heartbreaking diseases for which we can only offer palliative care. I believe that in the long term, a fundamental understanding of how the mitochon-dria work will give us an opportunity for real cures.”

Dr. Philip Yeske, the science and alliance officer of the United Mitochondrial Disease Foundation (UMDF), agrees that mitochondrial diseases pose unique medical challenges. There are about 250 mutations on both the nuclear and mitochondrial DNA that can lead to disease. And any given mutation can manifest itself in entirely different symptoms—heart-related problems for one patient and neurological disorders for another.

“The standard of care for patients affected by mitochondrial disease right now is treatment with vitamins and supplements,” Yeske says. “There are no licensed therapies available. And with the vitamin and supplement care, we don’t know enough about them to even say they are effective.”

But thanks to a rapidly growing body of research, prospects are looking more positive. A decade ago, therapeutics would have been a “pipe dream,” Yeske says, but in 2016, four companies are in active clinical trials for mitochondrial disease therapeutics, and many more are in preclinical planning.

“We’re at the beginning of an era of mitochondrial medicine, and that’s really exciting,” Yeske says.

At UW-Madison, Pagliarini’s young career has been on overdrive. Only months after arriving at CALS in 2009, his lab was jump-started by major research support from the federal economic stimulus program, which funded only the top 2 percent of proposals that year. Shortly after, he was named a Searle scholar and helped craft a major grant related to the NIH National Protein Structure Initiative, which further put his work on mitochondrial proteins in the national spotlight.

The past academic year could arguably be Pagliarini’s most exciting yet. In fall 2015, Pagliarini was named director of the Morgridge Institute for Research Metabolism Theme, which aims to establish a vibrant group of researchers focused on the basic underpinnings of metabolism. The Morgridge Institute is poised to make strategic hires and investments under Pagliarini’s direction that will help UW–Madison grow and thrive in this field.

This year, Pagliarini experienced a pinnacle of recognition as the recipient of a Presidential Early Career Award, given to top scientists and engineers in an array of fields. He and 100 national honorees visited the White House in May, touring its opulent historical meeting rooms and chatting with President Barack Obama and special guest Jeff Bezos, the CEO of Amazon.

“It was pretty special,” Pagliarini says. “What really stood out about it was how optimistic and forward-looking it was. You hear so much in science now about problems with funding or rising competition from other countries. This was very much about celebrating what we can do with U.S.-driven scientific research.”

Brad Schwartz, CEO of the Morgridge Institute, started getting indications early that Pagliarini was the right person to lead the campus-wide initiative. While meeting with potential recruits in 2014 from leading research universities, Schwartz was struck by how frequently Pagliarini’s name came up in conversations.

“After a very thorough national search, it only reinforced that Dave had the innovative thinking and creativity we were looking for,” Schwartz says. “He has all the personal characteristics needed to help build stronger community around as many as 500 scientists working on some aspect of metabolism in Madison.”

The Pagliarini lab is focused on a grand question: How do we define the unknown parts that contribute to the fully functioning engine of mitochondria? Pagliarini teamed with chemistry professor Josh Coon to win an award from a UW–Madison and Wisconsin Alumni Research Foundation (WARF) initiative called UW 2020—supporting projects that could change the direction of a field.

The goal will be to develop a “genetic knockout” strategy for a wide range of human cell lines. By analyzing all of the cellular changes that occur in each “knockout”—cells with a single gene removed—the researchers will be able to define molecular signatures that show an association between orphan proteins and established ones.

The team already has demonstrated great success by applying the same process to yeast, a model organism that is simple and fast growing, and employs cellular processes similar to those in humans. The yeast project, recently published in Nature Biotechnology, completed 174 individual gene deletions that helped predict the function of many orphan proteins. Replicating this process with human cells will require CRISPR gene editing technology as well as a private sector partner to create these knockout cell lines in an industrial process, so that the scientists can focus on growing and analyzing the lines.

Another research theme focuses on an important component of the energy chemical ATP production process called coenzyme Q. This lipid was discovered at the UW–Madison Enzyme Institute in the 1950s and was recognized as a key missing piece in the electron transport chain that mitochondria use for ATP synthesis. It is a complex molecule that needs to be made by mitochondria and is not supplied in the human diet.

Coenzyme Q deficiency causes a wide array of problems, from minor muscle disorders to severe disabilities and death. The research challenge is a familiar one: several steps in the coenzyme Q pathway are accomplished by proteins that have yet to be identified and defined. If the lab can identify the different steps of biosynthesis the body uses to make this important molecule, Pagliarini says, it could lead to breakthrough therapeutics to replace its loss. Some of the precursors for making coenzyme Q follow the same pathways as cholesterol, and statin-based drugs that block cholesterol may provide important insights.

Pagliarini and his 18-member research team now make their home on the second floor of the Discovery Building, which is dedicated to collaborative science that cuts across disciplines. The team includes postdoctorates, graduate students, senior staff researchers and a healthy mix of undergraduates.

They can even claim a bit of celebrity: PhD student Zachary Kemmerer is a former college wrestler and premier athlete who competes on the hit TV competition “American Ninja Warrior,” and is known as the “Science Ninja.” Kemmerer contributes to Discovery science outreach programs, helping kids get pumped up about the possibilities of science. His motto: “Powered by Mitochondria.”

Assistant scientist Jarred Rensvold PhD’15 first joined the Pagliarini lab as a graduate student at its inception in 2009 and has been there ever since. In one afternoon just before graduate school began, a parade of biochemistry professors offered “elevator pitches” of their work to new graduate students, hoping to generate recruits. “Dave gave a really energetic talk and I could see he was really excited about starting up his lab,” Rensvold says. “He seemed like he would be an excellent mentor. Even with all of his expanded responsibilities today, he makes time to give to each individual and each project in his lab, which is remarkable, I think.”

Postdoctoral research associate Natalie Niemi’s introduction to mitochondria was remarkably similar to Pagliarini’s, having “stumbled” on a connection in graduate school while doing unrelated protein studies. Today she studies an important process called phosphorylation, which is the turning on or off of enzymes that control energy metabolism. She has funding from the UMDF on this topic, and she gives back by helping organize a Wisconsin “Energy for Life” fundraiser to support UMDF causes.

“I think the potential to have an impact on the future matters,” Niemi says. “We’re working quite a few steps back from clinical trials, but trying to project how your research could have an impact on human health is rewarding. It’s also rewarding to make discoveries and be the first person to know something.”

The future for Pagliarini is brimming with opportunity. If you think of metabolism research as a living cell within UW–Madison, the Morgridge Metabolism Initiative provides a nucleus—or, perhaps, a mitochondrion!—for the first time. The effort already has produced a monthly symposia series and a major investment in mass spectrometry tools—a gold standard technology for conducting metabolism research.

Part of the challenge is building a sense of community within a very diverse group of researchers, where one finds pockets of metabolism-related work in the medical school, in countless bioscience labs, in chemical engineering, computer science and bioinformatics. The potential for new ideas and collaborations is only beginning.

“We’re in the era of collaborative science, so as our interactions build and gain success, they are bound to attract more people,” says Brian Fox, professor and chair of biochemistry. “Dave’s got a great eye for a problem, he’s very articulate in describing that problem, and he’s an excellent collaborator. That’s the kind of style that will help drive a campus-level project like the metabolism initiative.”

Green Therapy

The teens in the rehab program can’t have drugs, so they use the waterfall instead.

That’s how Lily Mank BSLA’15 explains the fact that when patients first visit the healing garden at the Rosecrance Griffin Williamson adolescent substance abuse facility in Rockford, Ill., they choose to sit near the cascading water.

“I think the drugs numb their emotions, and when they don’t have access to drugs, they become very raw, very sensitive to their thoughts,” says Mank. “They need the stimulation of the waterfall, the white noise, to quiet themselves down.

“They move away from the waterfall as they become more comfortable with their thoughts and more able to be balanced within themselves,” she says. “That’s a sign that they’re getting ready to leave the program.”

Mank doesn’t know if her explanation is right, but she plans to find out in her ongoing research of nature restoration.

The five-acre garden, designed by master Japanese landscape designer Hoichi Kurisu, is incorporated into every part of the highly successful 12-step addiction treatment program at the Rosecrance facility. It’s a powerful tool for clearing the minds of the 12- to 18-year-old patients.

It was also powerful for Mank. Since working in the garden as an intern in her junior year of the CALS landscape architecture program, she has made healing landscapes her career focus. She went on to do a senior thesis focused on improving nature access at a Wisconsin mental health hospital. She also earned a certificate in health care garden design at the Chicago Botanical Gardens and interned at Ziegler Design Associates, a company owned by Steve Ziegler BS’83 and Joan Werner-Ziegler BS’78, CALS alums who specialize in designing healing spaces.

Mank still thinks about the waterfall. How, exactly, she wonders, does spending time in the Rosecrance garden—or in any peaceful outdoor space—help settle an unsettled mind?

That’s a great question, says Sam Dennis. It’s right at the heart of what he studies as a professor and director of the Environmental Design Laboratory (EDL) in the CALS Department of Landscape Architecture (LA). While the LA department is best known for its work on environmental restoration—techniques people can use to heal damaged natural environments—Dennis and his team at the EDL flip that around. They’re finding ways to incorporate nature into human-made environments to restore the health of people. Dennis’s projects employ thoughtful outdoor design to help people eat better and get more exercise and to create safer, calmer and more cohesive neighborhoods.

Health-conscious design has always been on the department’s radar. In 1981, 10 years before the passage of the Americans with Disabilities Act, Steve Ziegler was encouraged to do his senior thesis on barrier-free design in elder care facilities. But today the topic is getting much more attention.

As one example, assistant professor Kristin Thorleifsdottir has been reworking the curriculum to make sure students get a good grounding in the burgeoning area of science that looks at connections between health and the built environment.

The native Icelander offers three classes on the topic, including a new sophomore-level design class in landscape architecture and a graduate seminar that attracts students from landscape architecture, interior architecture, urban and regional planning,health care and other disciplines. She touches on history—from the cities of the ancient Greeks to the urban squalor of the Industrial Revolution—but most of what she covers starts in the 1980s.

In a 1984 study, Texas A&M design professor Roger Ulrich found that postsurgical patients who had a view of trees from their hospital windows were released sooner, took less pain medication and experienced fewer complications than did patients who had a view of a blank wall.

“Ulrich’s study was the first that looked at health and design,” she says. “Since then there have been a lot more.” Those studies span diverse disciplines—urban planning, public health, pediatrics, psychology, gerontology, neurobiology, art, horticulture and forestry, to name a few—which means those who study the topic must learn several lexicons.

“The fields of public health and design speak very different languages,” Thorleifsdottir notes. “Design researchers tend to take a more qualitative approach—they look at how people experience the environment. Public health is very much into quantitative measures.”

Her own research focuses on health at the community level, including studies on neighborhood design and children’s outdoor physical activities. She’s embarking on two new studies, one of them on the quality of public city parks and the availability of settings for mental restoration, a collaborative project with research partners in Sweden and Serbia.

Sam Dennis has become pretty fluent in the language of public health. As part of UW–Madison’s campus-wide Obesity Prevention Initiative, his partners include researchers in nutritional sciences and family medicine. Body mass index (BMI) is a common research metric, and a recent study involved drawing blood. That project, a collaboration with the Madison-based nonprofit Community Groundworks, used a garden-based curriculum to teach young people to eat better.

“Rather than ask how much the students eat, the researchers took a blood sample. You could tell by levels of serum carotenoids in blood whether they were eating fruits and vegetables,” Dennis explains.

Dennis doesn’t wield the syringes. While his collaborators collect data on human health, he assesses how well the urban landscape supports it. He works with residents of underserved urban neighborhoods to identify features that either facilitate or impede physical activity, healthy eating and safety.

To collect the data, the EDL team has developed an innovative (and now widely replicated) tool that they dubbed “participatory photo mapping.” The researchers ask neighborhood residents—often kids—to photograph things that they see as barriers to healthy living, and then ask them to write stories explaining the photos.

“They tell the stories, then we geo-locate the stories and photos with GIS, so we can overlay their stories and images with, say, traffic data, or data about pedestrians and bicyclists getting hit by cars, or crime rates.”

Often the stories lead to simple fixes, such as repainting crosswalks, adding pedestrian signals or hiring a playground supervisor so that parents feel reassured about their kids using a local park.

But residents also point out problems that are pretty surprising—and tough to solve. Dennis recounts what Latino kids in South Madison had to say about a nearby city bike path.

“They say they’re not welcome there because the bike path is for white people—that you’ve got to be rich and have a special kind of bike,” Dennis says. “The literature says the presence of a bike trail significantly reduces the body mass index of everyone around it, but the kids aren’t using it because they don’t see it as their space. Instead, they ride on busy streets.”

“They’re very sensitive to where they feel welcome,” Dennis notes. “Mapping that is part of mapping their well-being.”

Stories like these are important, Dennis says, because they point to health problems that can’t be diagnosed by calculating body mass or drawing blood.

“Physiological things like body mass index are important, but so is our mental well-being,” Dennis says. “There’s a lot of research suggesting that chronic stress experienced by people with low incomes helps explains disparities in health across different environments. As environmental design researchers, we try to figure out the source of that stress and then see what we can do to reduce it through changes in the built environment.”

Spending time in a natural setting can relieve stress, but that’s not guaranteed. That was underscored by another of Dennis’ projects, a survey that looks at the benefits of natural outdoor classrooms at more than 200 early childhood care facilities across the U.S. and Canada.

Rapid staff turnover is a problem among early childhood care providers, due to low wages and very high stress. But according to the teachers surveyed, spending time in a green, natural environment during the workday helped compensate for the downsides.

“Their mental well-being is better supported when they can spend time in these natural settings,” Dennis says. He attributes this to a process known as attention restoration: We become mentally exhausted in situations where we have to make ourselves pay attention; our minds recover when doing things that are so inherently interesting that paying attention is effortless. Engaging with the natural world fits the latter category. But you really have to engage.

“The natural environment supports attention restoration if the teachers were using all of their senses to experience the natural environment in a loosely focused way, as opposed to the tight focus they give to their indoor lessons,” Dennis says. “It’s important that they aren’t ‘traffic cops’ or hypervigilant monitors like they typically are in a traditional playground setting—that they can engage with kids as they play in nature.”

Job stress is part of the job for caregivers at the UnityPoint Health–Meriter Child and Adolescent Psychiatric (CAP) Hospital, even though there’s plenty of nature nearby. The facility sits on a secluded wooded hilltop on the western edge of Madison. But while things outside are quiet and serene, inside a very different story plays out. The young patients who come here struggle with attention and impulsivity disorders, anxiety and depression—conditions that have made it hard to function in everyday life. Many, especially the teenagers, are at risk for suicide.

“We hear a lot of hard stories here,” says Karen Larson, the CAP program nurse manager. Mental illness in children can be as hard on families and staff as it is on the children, she points out.

Hospital staff members were excited when the program moved to this bucolic spot from its former downtown location in 2004. But they soon realized that there wasn’t a way to incorporate the green surroundings into the treatment of their emotionally fragile patients.

“We started looking at the evidence about the impact of a natural environment on depression, anxiety and well-being, and what it could mean to our patients,” Larson says, “and we realized how much better it could be.”

With research in hand, the Child and Adolescent team contacted their employer’s philanthropic partners—the Meriter Foundation and Friends of Meriter—about raising funds to create a healing space for the patients. She emphasized that she wasn’t asking for landscaping.

“I compared it to purchasing an orthopedic tool that would allow somebody to have their hip replaced,” Larson recalls. “In psychiatry, one tool is the engagement of patients and staff in their environment. The more beautiful, less stressful and skillfully planned the environment, the better the tool.”

After a successful fundraising campaign, Meriter hired Ziegler Design Associates to create the healing garden. It was a good fit. The firm has worked extensively with caregiving facilities and has developed many creative outdoor spaces for youth for schools.

“It was a very special opportunity, to be able to bring healing into the landscape for kids and families and staff who needed it so badly,” says Steve Ziegler. “But it was also a complicated design challenge. A typical hospital healing garden wouldn’t work here.”

“In a psychiatric population, safety is a primary concern,” Larson says. “And a psychiatric population of minors is vulnerable on so many levels. We needed to make the space beautiful and usable and child-friendly and calming—and also safe and secure.”

This garden wouldn’t have secluded spots for quiet contemplation. There couldn’t be any trees big enough or grass tall enough to screen a staff member’s view of patients. No sharp edges, no loose objects that could be thrown (bricks were glued together). Joan Werner-Ziegler, the firm’s perennial plant specialist, researched plants for toxicity and potential reactions with medications. Steve Ziegler spent several days looking for nicely rounded boulders with serene colors.

“I stayed away from bright colors,” he says. “If you’re under psychological stress, abrupt changes can trigger a lot more emotion than they would in you or me. Our colors are wonderful, but not jarring. We chose pavements that didn’t reflect glare, because some drugs make patients’ eyes sensitive.”

They ended up with a space that’s compact enough for careful supervision while offering a variety of places to be or wander. There’s a “traditional” garden (to remind patients of home), a stepping garden with pathways through the plants, a grass garden, a prairie sensory garden and a separate garden for horticultural therapy.

You can tell the space works, says Larson, by watching the patients: “They just naturally settle. They settle into the chairs, they sit on the boulders, they sprawl on the ground, they kick balls around. They just settle into the space.”

More important, Larson adds, the garden helps get the kids talking.

“When you work with kids who are psychiatrically hospitalized, you’re trying to help them express their feelings,” she says. “If you just start asking questions, they are likely to shut down.

But if you go for a walk, they’re more likely to start talking. It’s true for all of us: If we’re feeling comfortable, we can talk about things that are really hard to talk about. And that’s what we have to do here.”

The healing garden also works wonders for the staff.

“When you work in a caregiving field, you give so much,” Larson says. “Your successes can be small and the challenges can be huge. You have to bring your best self every day. And then many of us go home to stressful lives. So if part of your workday can be restorative, it’s a wonderful gift.”

Meanwhile, Lily Mank is still intrigued by that waterfall. Now a CALS grad student, she’s teaming up with Sam Dennis and Kristin Thorleifsdottir on research to understand how all elements of a garden ease patients’ minds as they address their addiction issues.

Her goal is to help designers view healing gardens not just as a collection of streams, pathways, plantings and benches, but also in terms of how those features allow patients to interact with nature. At the waterfall, a patient may simultaneously be sensing rushing water, the breeze, the coolness of shade, light dappling through the leaves and fish moving in the nearby pool. There are many possible interactions with nature, she says, and they can combine in many ways to evoke different emotions.

“I’m trying to find out how different interactions with nature make patients feel. If I understand that, it can be another way to think about garden design,” she says.

And if patients have a better understanding about how their interactions with nature make them feel, they can use that to continue healing when they get back home.

“They won’t have access to a garden like the one at Rosecrance, but they can still seek out places that let them encounter nature in ways that make them feel calm,” Mank says. “A healing garden can be anywhere.”

SIDEBAR—Healing With a Hoe

When Mike Maddox MS’00 signed on as Rock County’s UW–Extension horticulture agent in 2003, he thought gardening was about growing plants. Some tough-talking convicts convinced him otherwise.

Maddox was leading gardening workshops at Janesville’s Rotary Botanical Gardens when he got a call from the Rock County Jail asking if he could he teach some inmates. He figured he’d be working with some tough customers, and he was right—to start with.

“The first time these guys came out, they had this machismo attitude,” Maddox recalls. “They were too big and bad to be out there gardening. But after a few weeks, they were talking about how they used to work in the garden with their grandmas. And if they had kids, they were saying, ‘I need to get my kids out here doing this.’”

At the same time, Maddox was getting good news from the jail. On the days they’d been gardening, the prisoners were better behaved.

The experience was a career-changer for Maddox. It showed him that working with plants could be a powerful restorative tool, and he wanted to learn more. He got some formal training, first in Minnesota, and then in Colorado, where he earned a certificate in horticultural therapy. Now, as director of UW–Extension’s Master Gardener program, he trains 3,000 volunteers, and horticultural therapy is one of his favorite and most popular workshop topics. He’s also helping the Meriter Child and Adolescent Psychiatric Hospital staff incorporate horticultural therapy into their treatment program.

Maddox doesn’t usually lead horticultural therapy sessions himself, but he likes to keep his hand in it. So on Thursday mornings during the growing season, you’ll find him in a courtyard garden at the William S. Middleton Memorial Veterans Hospital in Madison. It features waist-level planting beds and wide walkways to accommodate the patients— many of them grizzled men leaning on canes or sitting in wheelchairs—who are busy planting and watering.

“It’s kind of a phenomenal process,” says Diane Neal, the hospital’s recreational therapist. “There is a positiveness that comes with being able to plant seeds and have them sprout. If the patients enjoy gardening and participate while they’re rehabbing, it raises their self-esteem and keeps them from being depressed.”

Nearby, Maddox is getting an earful. A U.S. Army veteran named August grew up on a Racine County truck farm, and he’s adamant that the VA garden is too small for corn. Maddox loves the give and take. He’s thrilled that August is so engaged.

“In this kind of a closed setting, where depression and isolation can be high and self-esteem can be low, you’ve got to create a spot where they can feel wanted and needed and purposeful,” he says.

It’s a lesson he learned from the jail inmates. “I thought it was going to be about growing carrots,” Maddox recalls. “No. It wound up being about growing individuals, just using carrots as the tool to do it.”

SIDEBAR—Why Nature Makes Us Feel Better 

The notion that nature can ease our minds is not new. It’s reflected in Japanese Zen gardens (an idea that goes back at least 10 centuries) and was espoused by writer Henry David Thoreau and by landscape architect Frederick Law Olmstead, who designed Central Park as an antidote to the stresses of urban life. But in the past 30 years or so, researchers have been digging into the science behind it.

A hardwired love of life. In 1984, Harvard biologist E.O. Wilson theorized that biophilia, our affinity for nature, is bred into us. He noted that the human race has been in close contact with nature for almost all of its 200,000-year history. Only in the past three centuries of industrialization have we separated ourselves from nature. Until then, a keen awareness of the natural environment was a trait that helped the fittest survive.

Restoring attention. A theory advanced in 1986 by University of Michigan psychologists Rachel and Stephen Kaplan holds that our most exhausting mental work is “directed attention”—when we have to force ourselves to concentrate. The way we recover is to give our minds over to things that are so fascinating that paying attention is effortless. The natural environment fits the bill because it’s immense in scale, full of fascinating things and usually removed from the places where we tax our minds.

Reducing rumination. Research published in 2015 by Gregory Bratman of Stanford University and others looks at how exposure to nature influences rumination— repetitive thought focused on negative aspects of the self—which is linked to depression and other mental illnesses. They found that a walk in a natural setting decreased self-reported rumination as well as neural activity in a part of the brain that’s associated with behavioral withdrawal linked to rumination. Walking in an urban setting had no such effect.

SIDEBAR—Tips for Creating Your Own Healing Garden 

Make it personal. Start by thinking about what it is that draws you into your yard, mentally and physically, advises landscape architect Steve Ziegler BS’83: “What’s healing for one person may not be healing for another.” For example, one of Ziegler’s clients likes to walk in the garden at night, so her garden features flowers and paving materials that reflect the moonlight. Another’s healing garden includes an attractive, custom-made clothesline, because she relishes the ritual of hanging out clothes. “That’s her Zen,” Ziegler says.

Mike Maddox MS’00, director of UW–Extension’s Master Gardener program, seconds that: “Don’t get caught up in magazine images of gardening or what’s on HGTV. Go with what’s fun. Work with plants you like and that have meaning to you.”

Make it lush. A rich diversity of plants leads to a diversity of animals—especially birds and insects—and a variety colors, aromas, textures and shapes. “You want to awaken all of your senses,” Ziegler says.

Create transitions. Moving from one area to another should be easy and inviting. That’s especially true for transitioning from your house to your garden. “You want it to be easy, not jarring,” Ziegler says. “If you have to walk out a south-facing door into the blazing sun, for instance, you might want to add a pergola that provides partial shade.”

Offer choices. We get stressed when we feel like we don’t have control over our daily lives. That’s huge for hospital patients—they can’t do much about their situation—and it’s true for the rest of us as well. A healing space can ease that by offering a choice of where to sit—in the sun or shade, in a secluded spot or a more social one—and of things to smell, feel, hear and look at.

Add a focal point. A well-composed photo draws your attention to a certain spot, and so can your sanctuary. It could be a water feature. Running water is therapeutic, and there’s a wonderful selection of easy-to-maintain fountains available, Ziegler says. A bench or gazebo can serve as a focal point as well as a place to sit. So can a tree or sculpture.

Take care of yourself. “If you want to garden, find tools that fit you well and learn about body mechanics and appropriate techniques for lifting, bending, cutting and pruning to make it easier on your body,” says Maddox. And pick tasks that are appropriate to your age and abilities. Pain is not therapeutic.

The Island of Giant Mice

Two thousand miles east of the coast of Argentina, Gough Island rises out of the Atlantic Ocean in an awesome display of ancient volcanic activity. A green carpet of windswept mosses and grasses covers 35 square miles of jagged peaks and steeply sloping valleys. Waterfalls spill out of craggy cliffs and fall hundreds of feet to the sea, which runs uninterrupted for another 1,700 miles before crashing into the tip of South Africa. It is one of the most remote places on our planet.

Four miles west of the University of Wisconsin– Madison campus, the Charmany Instructional Facility is a low-slung labyrinth of concrete hallways lined by bright fluorescent lights and permeated with a smell that is equal parts animal and antiseptic. Part of the UW School of Veterinary Medicine, Charmany is nearly half a world away from Gough Island (pronounced “Goff ”). Yet the two locations share a common trait— they both are home to the largest mice on Earth.

In terms of body size and weight, Gough Island mice are twice the size of their mainland cousins, notes Bret Payseur, a geneticist with a joint appointment in CALS and the School of Medicine and Public Health. “The amazing thing about them being twice the size is that they’ve only been on the island a couple of hundred years,” he says. The island’s early rodent settlers were a more moderate-sized strain of Mus musculus, house mice stowaways in the holds of sealing ships from Western Europe. But somewhere along the line, Gough Island mice outgrew that ancestry—doubling in size over the course of only a few hundred generations. “That’s incredibly rapid evolutionary change,” Payseur says. “It’s some of the most rapid that I know about.”

In the canon of origin stories, however, this tale reads more like a mystery. How did the Gough Island mice get so big so quickly? It could be that a genetic mutation proved so advantageous that huge mice became the norm. Or maybe conditions on the island favored preexisting genetic traits that had lain dormant until the mice became castaways. For the time being, however, the Gough mouse story is transcribed only in A’s, T’s, C’s and G’s—the nucleic acids that write genetic code. Payseur hopes to translate that text. What he finds could not only shed light on evolution in action. It could also help illuminate the genetic mechanisms underlying human metabolic diseases like obesity and diabetes.

The Island Rule

While Gough Island mice are unusually large, it isn’t unusual for small animals on islands to grow bigger than their mainland counterparts. The phenomenon is often referred to as the “island rule,” which states that, in general, small animals tend to get bigger and large animals tend to get smaller once they’ve been island castaways for some period of time. There are, of course, exceptions. But from giant Komodo dragons to extinct pygmy mammoths, examples of the island rule run throughout the animal kingdom.

The gigantism effect of this rule seems to be especially pronounced in rodents. Human history is full of daring adventure on the high seas involving fearless mariners and the obligatory stowaways—mice and rats. As a result, the world’s islands are full of transplanted rodents. Biologist J. Bristol Foster first posited the island rule in a 1964 paper in the journal Nature, titled “The Evolution of Mammals on Islands.” In his study, Foster looked at 69 populations of island mice off the coasts of Western Europe and North America. The mice in 60 of those populations were measurably larger than their mainland cousins. Since that study, time and again, scientists find mice and rats on islands that are markedly bigger than genetically similar mainland populations.

This is notable because, in evolution, random genetic mutations or suddenly shifting environmental conditions can lead a species down a certain path. Which means that chance plays a big role in charting a species’ history. “If you ‘run the tape’ once and go back and run it again,” Payseur says, “you would expect different outcomes because of that role of chance.” When patterns like the island rule appear in evolution, he says, “People get very excited. It suggests that what underlies the patterns is a common mechanism that would tell us something important about how evolution works.”

Payseur’s scientific background is anchored in evolutionary biology, and the natural history of species on islands has fascinated him throughout his career. After early work with primates in Madagascar, Payseur realized that, while there is a lot one can do in primate research, keeping captive colonies of lemurs in a lab and breeding the thousands of crosses needed to actually get at answers wasn’t one of them. So he turned his attention to mice.

“The great thing about house mice—and I know most people don’t think house mice are great—is that the strains or lines of mice that people study in the lab are descended from wild house mice, including the wild mice that often inhabit islands,” Payseur says. “So they’re kind of cousins evolutionarily and share a lot of the same traits. That means we can use the genetic tools developed for the lab strains of mice to understand what’s happening in wild mice.”

He’s looking to these small creatures to answer some very big questions. “In the very long term, what I would like to answer with this research is, ‘What types of genetic changes are responsible for the extreme body size on islands?” Payseur says. “Are they the same on different islands? Do we see the same genes popping up over and over again, or do organisms take different paths to get big?”

Knowing that he would have the time, money and resources to deal with only a single strain of island mouse at a time, Payseur decided to start with the most extreme example of the island rule that he could find. He turned to colleagues who studied house mice in the field—and every one of them pointed him to Gough Island.

An Incredible Journey

Most researchers simply order mice via catalog, usually from what Payseur calls “the world center for mouse genetics,” the Jackson Laboratory in Maine. A copy of their glossy catalog lets researchers pick trait-specific lines of mice, from body size and coat color to preassigned conditions like immunodeficiency. Then, simply place an order and wait a few days for the mail to arrive. Gough Island mice aren’t in that catalog. Which means that Payseur had to figure out a way to get mice from an incredibly remote island with a grand total of six to eight full-time human residents, all of whom were busy with their year-long stint staffing the South African National Antarctic Programme’s weather station.

The solution came in the form of an unusual and macabre adaptation of behavior in Gough Island mice. In addition to developing bigger bodies in their few hundred years on the island, they have also developed an appetite for bigger food—the chicks of nesting seabirds, which they, quite literally, nibble to death. Luckily for Payseur, there are quite a few people concerned about those seabirds.

Gough Island is officially a possession of Britain and part of the Dependency of Tristan de Cunha. It is also listed as a World Heritage Site by the United Nations Educational, Scientific and Cultural Organization, which recognizes Gough as a pristine, primarily untouched ecosystem. Its towering cliffs, according to the UNESCO description of the island, “host some of the most important seabird colonies in the world,” from the endangered Tristan albatross to the Atlantic petrel to the Northern Rockhopper penguin. Under such circumstances, a population of non-native, quick-breeding, bird-eating mice is of grave concern—especially to the governments and scientists tasked with preserving the island’s biodiversity.

Peter Ryan, director of the Percy FitzPatrick Institute of African Ornithology at the University of Cape Town, South Africa, says that, especially where petrels and albatrosses are concerned, Gough Island mice are a threat to breeding populations. Ryan has been an honorary conservation officer in the Tristan de Cunha islands since 1989 and has witnessed the decline in seabirds firsthand. When Payseur reached out to him in 2008, Ryan was working with Richard Cuthbert, a scientist at the Royal Society for the Protection of Birds, on a census of sorts to help the British government plan an intervention—or, rather, an eradication.

The mice “were easy enough to catch,” Ryan wrote in an email recalling Payseur’s request. “They occur at very high densities and we’d been live-catching lots of mice to estimate their movements and densities and to conduct poison trials to ensure that all were susceptible to the poison bait.” Ironically, in order to study how best to kill them, the researchers had the live traps, food, bedding and other paraphernalia needed to keep the mice alive for study.

The “big issue” Ryan recalls, was shipping them. Eventually, the crew of the S.A. Agulhas, a South African Antarctic research vessel, agreed to give the mice a lift, but “Even this was a bit tricky, because we had to convince them that the mice wouldn’t be able to escape.” In the fall of 2008, 50 Gough Island mice boarded a boat and took the return trip to the mainland, specifically Cape Town, South Africa. After a lot of paperwork they were sent to Johannesburg, with inspections and quarantines and mountains of paperwork piling up as they made their way by plane to Europe, then to Chicago and, in a final car ride, to the campus of the University of Wisconsin–Madison, where postdoctoral researcher Melissa Gray was waiting.

That September, Gray had just begun her stint in Payseur’s lab. The idea of working with mice excited her, since, as with Payseur’s initial study of primates in Madagascar, the Channel Island foxes she had been working on promised to be a difficult study organism. When a mentor suggested she reach out to Payseur, Gray says, “It was a perfect connection.” She had a background working on island populations and the genetics of size and “Bret already had this project and nobody to work on it.” Plus, she wouldn’t have to wait long to get going. “I started in Bret’s lab in September,” Gray recalls, “and the mice arrived in late October.”

Immediately upon their arrival, the Gough Island mice alleviated any concerns about their suitability as a study subject. “Basically it was a cardboard box with some breathing holes and food stuffed inside,” Gray recalls. But when she opened the box, “It was amazing,” she recalls. Ryan had sent 50 mice off to Wisconsin. Forty-five survived the trip and, even better, they’d managed to produce a couple of litters along the way. They hadn’t even begun their experiment, and already the Payseur Lab was growing a colony of Gough mice. “In a way, we ended up with more than we started with, which is crazy with the amount of stress they were under,” Gray says.

After that initial excitement wore off, the real work began. First, Gray had to randomly breed several sets of mice to ensure that their large size was genetic and not the result of conditions on the island. When those lines came out as big as the wild-born mice, she could turn her attention to creating the first lab-raised line of Gough Island mice, inbreeding some promising strains of mice to create lines that were genetically identical, which makes gene mapping much easier. These mice would then serve as the lab’s breeding colony, slated as mates for lab mice with a mainland heritage.

One way to think about the process—to borrow a metaphor from Mark Nolte, a current postdoctoral researcher in the Payseur Lab—is to imagine two decks of playing cards, one red and the other blue, where each card is a gene. Each deck represents a chromosome, a long strand of DNA wrapped around proteins that carries genetic instructions from a parent to its offspring. When sexual reproduction occurs, each parent contributes a copy of one of their two chromosomes to their offspring.

Imagine the Gough Island mice as having two blue decks of cards—one deck for each chromosome—and the mainland mice as having two red decks. Their initial mating yields what’s called a “filial generation one,” or an F1 baby mouse with two distinct chromosomes, one with all blue cards and the other with all red cards. But when an F1 mouse mates with another F1 mouse, those decks get shuffled. These “filial generation 2,” or F2 mice, hold the first key to untangling the riddle of the evolution of Gough Island’s giant mice.

Breaking the Code

In a small, windowless room at the Charmany Instructional Facility, doctoral candidate Michelle Parmenter lifts two wriggling brown mice out of separate plastic cages by the base of their tails. One is from a line of laboratory mouse with a lineage that runs, if one looks far enough back, to a population of U.S. house mouse. The other is also a strain of laboratory mouse, although it’s of the lab’s own creation—its Gough Island heritage evident in the way it dwarfs its companion when nestled side by side in Parmenter’s hand.

Parmenter, Nolte and a half-dozen Payseur Lab undergrads spend a large portion of their time taking measurements, plopping each of the 480 mice in the room—increasingly inbred descendants of the original Gough mice—one by one into an empty container of French onion dip and putting it on a scale.

Parmenter has slipped on tough blue “bite gloves” before handling the mice— and one mouse’s attempted nibbles remind her why she needs them. “Okay, you’re trying to bite me,” she announces, putting the critter down. “These bite gloves are good, but they’re only so good.”

A smaller mouse, on the other hand, sits meekly in her palm. Parmenter and Nolte say there are a lot of anecdotal differences in behavior between the Gough line of mice and their mainland counterparts. Gough mice scrabble at the corners of their clear plastic cages and frantically scale the grates near their water bottles like monkey bars. The mainland mice spend more time quietly nestled in the shredded paper bedding provided for burrows. When working with the mice, Parmenter and Nolte put them in deep plastic basins, since the Gough mice seem to be strong jumpers and more aggressive. In comparison, says Nolte, “I could work with classical laboratory strains of mice on a level surface and they wouldn’t go anywhere. They wouldn’t even try to escape.”

While they enjoy discussing the potential evolutionary drivers behind some of this observed behavior, what is really exciting to Parmenter and Nolte is what these mice are now telling them at a genetic level.

By crossing mice from Gough and the mainland strain, the Payseur Lab has produced about 1,400 F2 mice. They’ve extracted DNA from each one, sent those samples to a lab for analysis and, in return, received a genomic portrait of each mouse’s DNA. Combing through all of that is a slow process, says Parmenter, but already they are finding hints of the genetic code responsible for their remarkable size.

“Imagine I take the two decks of cards—or ‘chromosomes’—and spread them out, and I can go down each row and say, ‘Oh, there’s a mainland chunk of DNA,’ or ‘Hey, that one came from Gough,’” Nolte says. When you do this enough, patterns begin to appear. “If you take your largest mice and spread their decks, you notice that at the same position on the chromosome they all share the same Gough DNA.” When a big enough percentage of large mice show the same chunk of genes at the same position on the genome, Nolte says, it indicates that, somewhere in the region, there is a gene responsible for size.

That strong association, however, isn’t exactly a smoking gun. When the project began, says Payseur, a prevailing thought was that the rapid evolution in Gough Island mice would be the result of mutations in just a couple of key genes. But in a September 2015 paper in the journal Genetics, the lab published its first genetic mapping results from the F2 crosses, reporting that 19 different sections of the genome appear to play some role in the rapid and extreme size evolution of Gough Island mice. Each of those 19 sections is comprised of anywhere from 400 to 1,400 genes, which means there is much more work to do.

Right now, the process “is not getting at a specific gene,” says Gray, who was the lead author of the Genetics paper. “It’s saying, ‘Okay, this chunk of genome right here somehow corresponds to body size.’ So if you want to tease that apart more, you have to shuffle the deck again. And then shuffle it again.” Keeping your eye on the right card gets difficult. “You really need a lot of samples to get past the noise,” she says, “and that’s a challenge about a project like this. You need a lot of individuals, and that means a lot of money and a lot of time and a lot of mice.”

The Search for a New Island

As the “giant mice” experiment currently stands, the Payseur Lab will, eventually, uncover specific genes that are responsible for the Gough Island mouse’s astounding size, work that could have implications for research on things like human metabolic diseases or even breeding livestock.

“When you look at domesticated animals, size is one of the most important traits because it’s correlated with characteristics like productivity,” Payseur explains. “There’s a lot of interest in CALS in understanding the genetic basis of size variation—in that context it would help select for increased body size and know what genes confer the response. Maybe there’s a more efficient way to ‘build the animal.’”

But if Payseur is to truly unravel the evolutionary mystery of the island rule, he’s going to not only need more time, money and mice—he’s going to need a new island.

The idea is to run the same experiment with another population of large island mice and see if evolutionary patterns emerge. Do some of the same 19 genetic regions his lab has identified show up in those mice, or did they get bigger through a completely different mechanism?

“It would be nice to choose an island because it has similar ecological conditions to Gough that might have driven the same kind of body size increase,” Payseur muses. “But another consideration is, it would be nice to choose an island where the mice have come from a different part of the world. I’m in the throes of figuring that out right now.”

Either way, it’s not a decision that will be made quickly. And the project, which is funded in part by the National Institutes of Health, is slated to run for several more years, meaning that large mice will be calling a UW–Madison lab home for a while.

Gray has already moved on from the project, taking a job as a research scientist at Exact Sciences, a Madisonbased biotech company. Both Nolte and Parmenter realize that they’ll also head elsewhere in their careers before the full story of the Gough Island mice can be translated. But they admit to hoping that they’re still around when the next cardboard box full of large, wild mice arrives in the lab.

“Just knowing that Bret is pursuing a new island population makes us all giddy,” Nolte says.

Payseur shares their excitement, but he knew when he launched the study that he was signing on for what could end up being a career-long project.

“I think that genetics is the most powerful way to answer evolutionary questions,” he says. But getting at answers can be “more complicated than one might imagine,” Payseur admits. “It would be nice to have a simple explanation, but I tend to be attracted to more complicated projects.”

In one respect at least, things might be finally getting a little less complicated for the Payseur Lab: Wherever they turn next for a population of giant mice, the island in question will be a little less remote than Gough. And the mice involved will be a little smaller. And, just maybe, writing the next chapter of this story will be a little bit easier—aided by a key created from the genome of the largest mice on Earth.

 

To Market, to Market

If you’re familiar with the College of Agricultural and Life Sciences (CALS), you no doubt know all about Stephen Babcock and his test that more than 100 years ago revolutionized the dairy industry by providing an inexpensive, easy way to determine the fat content of milk (thus preventing dishonest farmers from watering it down). What you might not know is that his great discovery went unpatented. The only money Babcock received for his invention was $5,000 as part of a Capper Award—given for distinguished service to agriculture—in 1930.

Just years before Babcock received that award, another entrepreneur was hard at work in his lab—and his discovery would break ground not only in science, but also in direct remuneration for the university.

In 1923, Harry Steenbock discovered that irradiating food increased its vitamin D content, thus treating rickets, a disease caused by vitamin D deficiency. After using $300 of his own money to patent his irradiation technique, Steenbock recognized the value of such patents to the university. He became influential in the formation in 1925 of the Wisconsin Alumni Research Foundation (WARF), a technology transfer office that patents UW–Madison innovations and returns the proceeds back to the university.

Discoveries have continued flowing from CALS, and WARF plays a vital role for researchers wanting to patent and license their ideas. But today’s innovators and entrepreneurs have some added help: a new program called Discovery to Product, or D2P for short.

Established in 2013, and co-funded by UW–Madison and WARF, D2P has two main goals: to bring ideas to market through the formation of startup companies, and to serve as an on-campus portal for entrepreneurs looking for help. Together, WARF and D2P form a solid support for researchers looking to move their ideas to market. That was the intent of then-UW provost Paul DeLuca and WARF managing director Carl Gulbrandsen in conceiving of the program.

“The idea of D2P is to make available a set of skills and expertise that was previously unavailable to coach people with entrepreneurial interests,” explains Leigh Cagan, WARF’s chief technology commercialization officer and a D2P board member. “There needed to be a function like that inside the university, and it would be hard for WARF to do that from the outside as a separate entity, which it is.”

D2P gained steam after its initial conception under former UW–Madison chancellor David Ward, and the arrival of Rebecca Blank as chancellor sealed the deal.

“Chancellor Blank, former secretary of the U.S. Department of Commerce, was interested in business and entrepreneurship. D2P really started to move forward when she was hired,” says Mark Cook, a CALS professor of animal sciences. Cook, who holds more than 40 patented technologies, launched the D2P plan and served as interim D2P director and board chair.

With the light green and operational funds from WARF and the University secured, D2P was on its way. But for the program to delve into one of its goals— helping entrepreneurs bring their ideas to market—additional funding was needed.

For that money, Cook and DeLuca put together a proposal for an economic development grant from the University of Wisconsin System. They were awarded $2.4 million, and the Igniter Fund was born. Because the grant was good only for two years, the search for projects to support with the new funds started right away.

By mid-2014, veteran entrepreneur John Biondi was on board as director, project proposals were coming in and D2P was in business. To date, 25 projects have gone through the Igniter program, which provides funding and guidance for projects at what Biondi calls the technical proof of concept stage. Much of the guidance comes from mentors-in-residence, experienced entrepreneurs that walk new innovators down the path to commercialization.

“For Igniter projects, they need to demonstrate that their innovation works, that they’re not just at an early idea stage,” explains Biondi. “Our commitment to those projects is to stay with them from initial engagement until one of three things happen: they become a startup company; they get licensed or we hand them over to WARF for licensing; or we determine this project might not be commercial after all.”

For projects that may not be destined for startup or that need some additional development before going to market, the collaboration between WARF and D2P becomes invaluable. WARF can patent and license discoveries that may not be a good fit for a startup company. They also provide money, called Accelerator funding, for projects that need some more proof of concept. Innovations that may not be ready for Igniter funds, but that are of potential interest to WARF, can apply for these funds to help them move through the earlier stages toward market.

“Some projects receive both Accelerator and Igniter funding,” says Cagan. “Some get funding from one and not the other. But we work together closely and the programs are being administered with a similar set of goals. We’re delighted by anything that helps grow entrepreneurial skills, companies and employment in this area.”

With support and funding from both WARF and D2P, entrepreneurship on campus is flourishing. While the first batch of Igniter funding has been allocated, Biondi is currently working to secure more funds for the future. In the meantime, he and others involved in the program make it clear that the other aspect of D2P—its mission to become a portal and resource for entrepreneurs on campus—is going strong.

“We want to be the go-to place where entrepreneurs come to ask questions on campus, the starting point for their quest down the entrepreneurial path,” says Biondi.

It’s a tall order, but it’s a goal that all those associated with D2P feel strongly about. Brian Fox, professor and chair of biochemistry at CALS and a D2P advisory board member, echoes Biondi’s thoughts.

“D2P was created to fill an important role on campus,” Fox says. “That is to serve as a hub, a knowledge base for all the types of entrepreneurship that might occur on campus and to provide expertise to help people think about moving from the lab to the market. That’s a key value of D2P.”

Over the past two years, D2P, in collaboration with WARF, has served as precisely that for the 25 Igniter projects and numerous other entrepreneurs looking for help, expertise and inspiration on their paths from innovation to market. The stories of these four CALS researchers serve to illustrate the program’s value.

Reducing Antibiotics in Food Animals

Animal sciences professor Mark Cook, in addition to helping establish D2P, has a long record of innovation and entrepreneurship. His latest endeavor, a product that has the potential to do away with antibiotics in animals used for food, could have huge implications for the animal industry. And as he explains it, the entire innovation was unintentional.

“It was kind of a mistake,” he says with a laugh. “We were trying to make an antibody”—a protein used by the immune system to neutralize pathogens—“that would cause gut inflammation in chickens and be a model for Crohn’s disease or inflammatory bowel disease.”

To do this, Cook’s team vaccinated hens so they would produce a particular antibody that could then be sprayed on feed of other chickens. That antibody is supposed to cause inflammation in the chickens that eat the food. The researchers’ model didn’t appear to work. Maybe they had to spark inflammation, give it a little push, they thought. So they infected the birds with a common protozoan disease called coccidia.

“Jordan Sand, who was doing this work, came to me with the results of that experiment and again said, ‘It didn’t work,’” explains Cook. “When I looked at the data, I saw it was just the opposite of what we expected. The antibody had protected the animals against coccidia, the main reason we feed antibiotics to poultry. We knew right away this was big.”

The possibilities of such an innovation—an antibiotic-free method for controlling disease—are huge as consumers demand antibiotic-free food and companies look for ways to accommodate those demands. With that potential in hand, things moved quickly for Cook and Sand. They filed patents through WARF, collaborated with faculty colleagues and conducted experiments to test other animals and determine the best treatment methods. More research was funded through the WARF Accelerator program, and it became clear that this technology could provide the basis for a startup company.

While Cook didn’t receive funds from D2P to bring the product to market, he and Sand used D2P’s consulting services throughout their work—and continue to do so. Between WARF funding and help from D2P, Cook says starting the current company, Ab E Discovery, has been dramatically different from his previous startup experiences.

“D2P is a game changer,” says Cook. “In other cases, there was no structure on campus to help. When you had a technology that wasn’t going to be licensed, you had to figure out where to get the money to start a company. There were no resources available, so you did what you could, through trial and error, and hoped. Now with WARF and D2P working together, there’s both technical de-risking and market de-risking.”

The combination of WARF and D2P has certainly paid off for Cook and Sand. They have a team and a CEO, and are now producing product. Interest in the product is immense, Cook says. He’d like to see the company grow and expand—and stay in Wisconsin.

“It’s been a dream of mine to make Wisconsin a centerpiece in this technology,” Cook says. “I’d like to see the structure strong here in Wisconsin, so that even when it’s taken over, it’ll be a Wisconsin company. That’s my hope.”

Better Corn for Biofuel

Corn is a common sight in Wisconsin and the upper Midwest, but it’s actually more of a tropical species. As the growing regions for corn move farther north, a corn hybrid has to flower and mature more quickly to produce crop within a shorter growing season. That flowering time is determined by the genetics of the corn hybrid.

Conversely, delayed flowering is beneficial for other uses of corn. For example, when flowering is delayed, corn can produce more biomass instead of food, and that biomass can then be used as raw material to make biofuel.

The genetics of different hybrids controls their flowering time and, therefore, how useful they are for given purposes or growing regions. Shawn Kaeppler, a professor of agronomy, is working to better understand those genes and how various hybrids can best fit a desired function. Much of his work is done in collaboration with fellow agronomy professor Natalia de Leon.

“We look across different populations and cross plants to produce progeny with different flowering times,” Kaeppler explains. “Then we use genetic mapping strategies to understand which genes are important for those traits.”

Throughout his work with plant genetics, Kaeppler has taken full advantage of resources for entreprenuers on campus. He has patents filed or pending, and he has also received Accelerator funds through WARF. For his project looking at the genetics behind flowering time, Kaeppler and graduate student Brett Burdo received Igniter funds from D2P as well. The Igniter program has proven invaluable for Kaeppler and Burdo as they try to place their innovation in the best position for success.

“I found the Igniter program very useful, to go through the process of understanding what it takes to get a product to market,” says Kaeppler. “It also includes funding for some of the steps in the research and for some of the time that’s spent. I can’t fund my graduate student off a federal grant to participate in something like this, so the Igniter funding allowed for correct portioning of funding.”

The end goal of Kaeppler’s project is to develop a transgenic plant as a research model and license the technology, not develop a startup company. His team is currently testing transgenic plants to work up a full package of information that interested companies would use to decide if they should license the technology. For Kaeppler, licensing is the best option since they can avoid trying to compete with big agricultural companies, and the technology will still get out to the market where it’s needed to create change.

“In this area of technology transfer, it is important not only to bring resources back to UW but also to participate in meeting the challenges the world is facing with increasing populations,” says Kaeppler. “Programs like D2P and WARF are critical at this point in time to see the potential of these discoveries realized.”

A Diet to Treat Disease

Around the world, about 60,000 people are estimated to have phenylketonuria, or PKU. Those with the inherited disorder are unable to process phenylalanine, a compound found in most foods. Treatment used to consist of a limited diet difficult to stomach. Then, about 13 years ago, nutritional sciences professor Denise Ney was approached to help improve that course of treatment.

Dietitians at UW–Madison’s Waisman Center wanted someone to research use of a protein isolated from cheese whey—called glycomacropeptide, or GMP—as a dietary option for people living with PKU. Ney took on the challenge, and with the help of a multidisciplinary team, a new diet composition for PKU patients was patented and licensed.

“Mine is not a typical story,” says Ney, who also serves as a D2P advisory board member. “Things happened quickly and I can’t tell you why, other than hard work, a good idea and the right group of people. We’ve had help from many people—including our statistician Murray Clayton, a professor of plant pathology and statistics, and the Center for Dairy Research—which helped with development of the foods and with sensory analysis.”

Being at the right place at the right time had a lot to do with her success thus far, Ney notes. “I’m not sure this could have happened many places in the world other than on this campus because we have all the needed components—the Waisman Center for care of patients with PKU, the Wisconsin Center for Dairy Research, the clinical research unit at University of Wisconsin Hospitals and Clinics, and faculty with expertise in nutritional sciences and food science,” she says.

Ney is currently wrapping up a major clinical trial of the food formulations, referred to as GMP medical foods, that she and her team developed. In addition to those efforts, the new diet has also shown surprising promise in two other, seemingly unrelated, areas: weight loss and osteoporosis prevention.

“My hypothesis, which has been borne out with the research, is that GMP will improve bone strength and help prevent fractures, which are complications of PKU,” explains Ney. “I have a comprehensive study where I do analysis of bone structure and biomechanical performance, and I also get information about body fat. I observed that all of the mice that were fed GMP, whether they had PKU or not, had less body fat and the bones were bigger and stronger.” Interestingly, the response was greater in female compared with male mice.

To support further research on this new aspect of the project, Ney received Accelerator funds from WARF for a second patent issued in 2015 titled “Use of GMP to Improve Women’s Health.” Ney and her team, including nutritional sciences professor Eric Yen, are excited about the possibilities of food products made with GMP that may help combat obesity and also promote bone health in women.

“There is a huge market for such products,” says Ney. “We go from a considerably small group of PKU patients who can benefit from this to a huge market of women if this pans out. It’s interesting, because I think I’m kind of an unexpected success, an illustration of the untapped potential we have here on campus.”

Fewer Antibiotics in Ethanol Plants

Bacteria and the antibiotics used to kill them can cause significant problems in everything from food sources to biofuel. In biofuel production plants, bacteria that produce lactic acid compete with the wanted microbes producing ethanol. At low levels, these bacteria decrease ethanol production. At high levels, they can produce so much lactic acid that it stops fermentation and ethanol production altogether.

The most obvious solution for stopping these lactic acid bacteria would be antibiotics. But as in other industries, antibiotics can cause problems. First, they can be expensive for ethanol producers to purchase and add to their workflow. The second issue is even more problematic.

“A by-product of the ethanol industry is feed,” explains James Steele, a professor of food science. “Most of the corn kernel goes toward ethanol and what remains goes to feed. And it’s excellent animal feed.”

But if antibiotics are introduced into the ethanol plant, that animal feed byproduct can’t truly be called antibioticfree. That’s a problem as more and more consumers demand antibiotic-free food sources. But Steele and his colleagues have a solution—a way to block the negative effects of lactic acid bacteria without adding antibiotics.

“We’ve taken the bacteria that produce lactic acid and re-engineered it to produce ethanol,” says Steele. “These new bacteria, then, compete with the lactic acid bacteria and increase ethanol production. Ethanol plants can avoid the use of antibiotics, eliminating that cost and increasing the value of their animal feed by-product.”

The bacteria that Steele and his team have genetically engineered can play an enormous role in reducing antibiotic use. But that benefit of their innovation didn’t immediately become their selling point. Rather, their marketing message was developed through help from D2P and the Igniter program.

“Learning through D2P completely changed how we position our product and how we interact with the industry,” says Steele. And through that work with D2P, Steele plans to later this year incorporate a company called Lactic Solutions. “D2P has helped us with the finance, the organization, the science, everything. Every aspect of starting a business has been dealt with.”

Steele and his collaborators are now working to refine their innovation and ideas for commercialization using Accelerator funds from WARF. Steele’s work, supported by both WARF and D2P, is a perfect example of how the entities are working together to successfully bring lab work to the market.

“There is no doubt in my mind that we would not be where we are today without D2P,” says Steele. “On top of that you add WARF, and the two together is what really makes it so special. There’s nothing else like it at other campuses.”

With such a strong partnership campaigning for and supporting entrepreneurship at UW–Madison, CALS’ strong history of innovation is poised to endure far into the future, continuing to bring innovations from campus to the world. And that is the embodiment of the Wisconsin Idea.

 

Breeding for Flavor

On a sticky weekday morning in August, a new restaurant called Estrellón (“big star” in Spanish) is humming with advanced prep and wine deliveries. All wood and tile and Mediterranean white behind a glass exterior, the Spanish-style eatery is the fourth venture of Madison culinary star Tory Miller. Opening is just three days away, and everything is crisp and shiny and poised.

But in the dining room, the culinary focus is already years beyond this marquee event. This morning is largely about creating the perfect tomato. Graduate students from UW–Madison working on a new program called the Seed to Kitchen Collaborative have set the table with large sheets of white paper and pens. At each place setting are a dozen small plastic cups of tomatoes, diced as if for a taco bar. Each container is coded.

Chef Miller takes a seat with colleagues Jonny Hunter of the Underground Food Collective and Dan Bonanno of A Pig in a Fur Coat. The chefs are here to lend their highend taste buds to science, and they start to banter about tomato flavor. What are the key elements? How important are they relative to each other?

Despite their intense culinary dedication, these men rarely just sit down and eat tomatoes with a critical frame of mind. “I learned a lot about taste through this project,” says Hunter. “I really started thinking about how I defined flavor in my own head and how I experience it.”

This particular tasting was held last summer. And there have been many others like it over the past few years with Miller, Hunter, Bonanno and Eric Benedict BS’04, of Café Hollander.

The sessions are organized by Julie Dawson, a CALS/UW–Extension professor of horticulture who heads the Seed to Kitchen Collaborative (formerly called the Chef–Farmer–Plant Breeder Collaborative). Her plant breeding team from CALS will note the flavors and characteristics most valuable to the chefs. Triangulating this with feedback from select farmers, plant breeders will get one step closer to the perfect tomato. But not just any tomato: One bred for Upper Midwest organic growing conditions, with flavor vetted by some of our most discerning palates.

“We wanted to finally find a good red, round slicer, and tomatoes that look and taste like heirlooms but aren’t as finicky to grow,” says Dawson at the August tasting, referring to the tomato of her dreams. “We’re still not at the point where we have, for this environment, really exceptional flavor and optimal production characteristics.”

Nationwide, the tomato has played a symbolic role in a widespread reevaluation of our food system. The pale, hard supermarket tomatoes of January have been exhibit A in discussions about low-wage labor and food miles. Seasonally grown heirloom tomatoes have helped us understand how good food can be with a little attention to detail.

But that’s just the tip of the market basket, because Dawson’s project seeks to strengthen a middle ground—an Upper Midwest ground, actually—in the food system. With chefs, farmers and breeders working together, your organic vegetables should get tastier, hardier, more abundant and more local where these collaborations exist.

Julie Dawson decided she wanted to be a farmer at age 8. By her senior year in high school she was hooked on plant breeding and working in the Cornell University lab of Molly Jahn—now a professor of agronomy at CALS—on a project developing heat tolerance in beans. Dawson stayed at Cornell for college and continued to work for Jahn and Margaret Smith, a corn breeder who was working with the Iroquois to resurrect traditional breeds. By the time she finished college, Dawson had a strong background in both plant breeding and participatory research. During her graduate education at Washington State University she began breeding wheat for organic systems. As a postdoc in France, she started working on participatory breeding with bakers and farmers, focusing on organic and artisanal grains.

In September of 2013, barely unpacked in Madison, Dawson found herself traveling with CALS horticulture professor and department chair Irwin Goldman PhD’91 to a conference at the Stone Barns Center for Food & Agriculture north of New York City.

Organized by food impresario Dan Barber, author of The Third Plate: Field Notes on the Future of Food, the conference gathered chefs and breeders from across the country to talk about flavor. Barber knew what could happen when chefs and breeders talked because he was already working with Dawson’s graduate advisor at Washington State, wheat breeder Stephen S. Jones.

In the 1950s, as grocery stores replaced corner markets and California’s Central Valley replaced truck gardens, the vegetable market began to value sizes and shapes that were more easily processed and packed. That a tomato could be picked early in Florida and ripen during the boxcar ride to Illinois was more important than how it tasted. Pesticides and fertilizers also became more common, buffering differences between farms and providing a more uniform environment. Packing houses and national wholesalers dominated the market, and vegetable breeding followed.

Breeders have at their disposal a huge variety of natural traits—things like color, sugar content and hardiness. Over the course of decades they can enhance or inhibit these traits. But the more traits they try to control, the more complex the breeding. And flavor has been neglected over the last few decades in favor of traits that benefit what has become our conventional food system. “Breeders were targeting a different kind of agricultural system,” explains Dawson.

Barber wanted to reverse that trend, to connect farmers and plant breeders and chefs. It appealed to Dawson’s sense of where food should be going. “Breeding for standard shapes and sizes and shipping ability doesn’t mean that breeders aren’t interested in flavor,” she says. “It just means that the market doesn’t make it a priority.”

New to Madison, Dawson hadn’t met Tory Miller, but they connected at the Stone Barns Center, and together realized Madison was the perfect place to pursue this focus on flavor: A strong local food movement supporting a dynamic and growing number of farms, world-class chefs, and—through CALS’ Plant Breeding and Plant Genetics Program—one of the highest concentrations of public plant breeders in the world.

They decided to get started in the summer of 2014 by growing a collective palette of many varieties of the most common vegetables. Dawson approached the breeders, Miller rallied the chefs, and both reached out to their network of farmers. “The main idea of the project is to get more informal collaboration between farmers and plant breeders and chefs—to get the conversation started,” says Dawson. “We can really focus on flavor.”

When the chefs are done tasting tomatoes, they wander over to a table of corn and cucumber. They are magnetized by the different kinds of corn: an Iroquois variety, another type that is curiously blue, and large kernels of a corn called choclo, which is very popular in the Andes.

These are just a few jewels from the collection amassed over four decades by CALS corn breeder Bill Tracy, who works in both conventional and organic sweet corn. Tracy leads the world’s largest research program focused on the breeding and genetics of organic sweet corn, with five organically focused cultivars currently on the market. He was recently named the nation’s first endowed chair for organic plant breeding, with a $1 million endowment from Organic Valley and Clif Bar & Company and a matching $1 million gift from UW alumni John and Tashia Morgridge.

The support gives Tracy more room to get creative, and Dawson is helping to develop potential new markets for his breeds. Despite his focus on sweet corn, Tracy has always suspected there might be interest in corn with more flavor and less sugar. “We know from sweet corn that there are all sorts of flavors and tendencies,” Tracy says. From soups to the traditional meat and potato meal, he thinks savory corn deserves a place.

And building from deep Mexican and South American traditions of elotes and choclo corns, Tracy sees vast potential for new varieties. “Corn is one of the most variable species,” he says. “For every trait that we work with in corn there is an incredible range of variation.”

The chefs went crazy last year when Tracy introduced them to some of the Andean varieties. “Amazing,” says Bonanno of A Pig in a Fur Coat. “I want to make a dish like a risotto or a pasta dish or some type of salad. I don’t want the sweet on sweet on sweet. I just want the corn flavor. I want savory.”

Tracy’s modest sampler inspired chefs Hunter and Miller as well, and they started brainstorming potential growers for 2016. If the experiment takes off, the corn could start infiltrating Wisconsin restaurants this summer.

With so much genetic potential, the chefs help focus the breeding process. “Breeding is a craft,” Tracy says. “The great chefs—and we have some great ones in Madison—are truly artists. They are fine artists at the same level as a fine arts painter or musician. The creativity is just mind-boggling.”

And there is little question that they understand flavor. “They are able to articulate things that we can’t. We might be able to taste the differences, but we can’t say why they are different or why one is better than the other. The chefs are able to do that,” says Dawson. “And that’s useful for the whole food system.”

A food system has so many pieces— chefs, farmers, retailers, processors, consumers—but perhaps the most fundamental unit is the seed. After decades of consolidation in the seed industry and a significant decline in public breeding programs at land grant universities, many sectors of the food movement are turning their attention to seed.

One fortunate consequence of the industry concentration has been to create a market opening for smaller regional and organic seed companies. They, along with a few public breeders, still serve gardeners and market farmers. One goal of the Seed to Kitchen Collaborative is to systematically support breeding for traits that are important for local food systems.

These small companies develop their own breeds, but also adopt interesting varieties from public breeding programs. They have the capacity to target regional seed needs, and are usually okay with seed saving. “It’s almost like working with nonprofits because they are really interested in working with the community,” says Dawson.

After Adrienne Shelton MS’12 completed her PhD in 2014—she studied sweet corn breeding under Bill Tracy— she moved to Vitalis Organic Seeds, where she works with growers to find cultivars best suited for the Northeast. As a graduate student in CALS’ Plant Breeding and Plant Genetics program, Shelton was a leader in establishing the Student Organic Seed Symposium, an annual national gathering to offer information and support to young researchers focusing on breeding organic varieties.

“Getting farmers’ feedback is critical,” says Shelton of the opportunity to work with the Seed to Kitchen Collaborative. “The more locations, the better, especially in organic systems where there is more variation.”

The organic movement deserves a lot of credit for the trajectory of new food movements. “Organic growers often have a higher bar for the eating quality of produce because that’s what their customers are demanding,” Shelton says. “Putting a spotlight not just on the farmers but all the way back to the breeding is helping the eater to recognize that all these pieces have to be in place for you to get this delicious tomato that you’re putting on your summer salad.”

These kinds of seed companies will also help make local and regional food systems more resilient to climate change. “It’s fairly easy to breed for gradual climate change if you are selecting in the target environment, because things change over time,” says Dawson. “The most important thing is to have regional testing and regional selection.”

Overall, a more vigorous relationship between breeders and farmers promises a larger potential for varieties going forward, Dawson notes. The ultimate goal is to make plant breeding more of a community effort. When chefs and farmers and consumers participate in the selection process, says Dawson, “The varieties that are developed are going to be more relevant for them.”

Amy Wallner BS’10, a CALS graduate in horticulture and soil sciences, has worked behind both the knife and the tiller. While farming full-time, she spent six months working nights at a Milwaukee farm-to-table restaurant called c. 1880. Now she’s the proprietor of Amy’s Acre—actually, an acre and a half this year—on the margins of a commercial composting operation in Caledonia, Wisc., south of Milwaukee.

She sells to a co-op and a North Side farmers market, but her restaurant clients—c. 1880, Morel and Braise RSA (also part of the Seed to Kitchen Collaborative)—are integral to her business. Before she orders seed for the next growing season, she’ll drop off her catalogs for the chefs to study, returning later for in-depth conversation. “Chefs who want to buy local foods want to have a greater understanding of the whole process,” Wallner says. “I just like to sit down and talk about produce with somebody who uses it just as much as I do.”

Knowing the ingredients they covet, and what kinds of flavors intrigue them, helps Wallner narrow her crop list. Joining the Seed to Kitchen Collaborative took it further. As a student Wallner had worked in the trial gardens at the West Madison Agricultural Research Station, and now she can truly appreciate the farm value of that research. “I wanted to stay connected to UW,” she says.

This will be Wallner’s third season as part of the group’s trials. In her excitement, the first year she grew more than she could handle. Last year she trialed beets, carrots and tomatoes alongside radicchio and endives. “I took on a smaller number of crops because I wanted to be able to collect more extensive observations,” she says.

Wallner hopes getting the breeders involved may lead to strengthening the hardiness of early- and late-season crops. “In the Upper Midwest, that’s when you’re doing the most gambling with your crops. If we can continue to find things that can push those limits out a little bit …”

Eric Elderbrock, of Elderberry Hill Farm near Madison, has similar practical concerns: With the region’s incredibly variable climate, he’s always looking for something that isn’t going to require the most perfect growing conditions and is also resistant to disease and insects: “For it to be a realistic thing for me to be able to grow, it has to meet these demands.”

When he was growing up, Elderbrock didn’t pay much attention to where his food came from. It wasn’t until he spent a college semester in Madagascar that he began to realize the relationship between the food and the land around him. For him, the collaboration is a form of continuing education.

“It’s helpful to me as a farmer to have a sense of what’s possible as far as the breeding side,” says Elderbrock. “I love seeing all of the different colors and flavors and textures. It helps keep farming interesting.”

As picturesque as these relationships are, the business has to work. High-end cuisine doesn’t reflect most daily eating, but these chefs are very committed to helping Wisconsin farmers stay in business and make a good living.

“The chefs always seem to be a couple of years ahead,” Elderbrock notes. This year he is continuing to experiment with artichokes, a crop typically associated with dry Mediterranean climates like Spain and California. Chef Dan Bonanno is encouraging the research in part because of his Italian heritage and culinary training, which included a year in Italy. He would be thrilled to find Wisconsin variations on some traditional Italian ingredients like the artichoke.

And sourcing locally also leads to a robust cuisine. “Italy has 20 regions and each region has its own cuisine because they source locally,” notes Bonanno.

This past February, a few weeks before growers would start their seedlings, the Seed to Kitchen Collaborative gathered to tweak plans for this year’s trials.

At L’Etoile, Chef Tory Miller’s flagship establishment in Madison, beautiful prints of vegetables adorn the wall. But the tables that day were rearranged in a horseshoe. The distinctive conference seating suppresses the normally refined air. Only the curvature of the bar and its adjacent great wall of bourbon suggested a more sensual approach to food.

After introductions and a quick review of last year’s progress, Dawson opens the floor to feedback. The ensuing conversation distills into savory glimpses of market baskets and menu flourishes to come.

They’ve been talking about running a trial for tomato “terroir”—drawing from the wine enthusiasts’ notion that differences in soil can have subtle and profound impacts on flavor. Dawson is a little concerned about logistics, but Miller is persistent: “I think it would be a mistake to not include terroir.”

They discuss what they can do for unsung vegetables like rutabaga and parsnip—produce particularly suited for the Wisconsin climate, but generally unloved. They learn about a new trial focusing on geosmin, which produces the earthy flavor of beets. The chefs wonder aloud if it’s possible to preserve the beautiful purple hues of some heirlooms. Dawson regrets to inform them that changing the physical chemistry involved—the pigments are water soluble, and flush easily from the plants—is a little beyond their powers.

They talk about what makes perfect pepper for kitchen processing. Is seedless possible? Dawson smiles wryly and reminds them of the intrinsic challenge of a seedless pepper.

The conversation gets very detailed over potatoes. Researcher Ruth Genger from the UW’s Organic Potato Project has about 40 heirloom varieties of potato from the Seed Savers Exchange that will be grown out over the next few years. Chef Bonanno asks a technical question about starch content for gnocchi, and then Chef Miller goes off on French fries.

“I’ve been working on trying to break the consumers’ McDonald’s mentality on what a French fry should be,” Miller says. The sheer volume is a perfect example of how hard it can be to assemble the pieces of a sustainable and local food system. “We’re talking about thousands of pounds of French fries,” he says, the other chefs nodding in agreement. “You want to have a local French fry, but at a certain point it’s not sustainable or feasible. Or yummy.” One recent hitch: a harvest of local spuds were afflicted by hollow heart disease.

Genger’s heirloom potato trials have focused on specialty varieties—yellows, reds and blues—but Genger has an alternative: “We have some white potatoes that are pretty good producers organically, but what I tend to hear is that most people don’t like white potatoes.” The chefs don’t seem worried about the difference. “There are some good, white varieties from back in the days when that was what a potato was,” Genger continues, making a note. Knowing that the interest is there, she can make sure farmers and chefs have a chance to evaluate some white heirloom potatoes.

It’s a short conversation, really, but shows the potential value of having everybody at the table. If the breeder has the right plant, the farmers have a good growing experience and the chefs approve, perhaps in another couple of years there could be thousands of pounds of locally sourced organic white French-fried potatoes ferrying salt and mayonnaise and ketchup to the taste buds of Wisconsin diners.

“We try to make the project practical,” says Dawson. “The food system is so complicated. It feels like this is something we can make a difference with. This can help some farmers now, and in 10 years hopefully it will be helping them even more.”

Bill Tracy puts the program in an even bigger context.

“The decisions we make today create the future,” Tracy says. “The choices we make about what crops to work in and what traits to work in literally will create the future of agriculture.”

Farmers, gardeners and chefs are welcome to join the Seed to Kitchen Collaborative. You can learn more about project events at http://go.wisc.edu/seed2kitchen or email Julie Dawson at dawson@hort.wisc.edu.