Stay Longer in the Kickapoo

The Kickapoo Valley is a picturesque area of western Wisconsin that attracts many visitors during the summer. But to improve economic development throughout this rural region, many residents and business owners want to lengthen the tourism season—and CALS/UW–Extension researchers are helping them make plans to do so.

“We’re fairly busy in the peak season, but tourism drops off in the shoulder months,” says Sadie Urban, the events coordinator for the Kickapoo Valley Reserve, an 8,500-acre natural and recreational area. “There’s still a lot to do in the area during those times, but we don’t really see the tourists then.”

To form a plan of action to attract new visitors, the Kickapoo Valley Reserve applied for funding help from the Kickapoo Valley Reforestation Fund, also known as the Ralph Nuzum Fund. The fund supports projects that enhance the ecological, economic and social well-being of Kickapoo Valley residents.

As part of the grant, Urban and her colleagues needed a University of Wisconsin partner—and Bret Shaw, a CALS professor of life sciences communication, was the right fit for the project.

“I’m interested in the intersection of tourism, sustainability and economic development, so this project was right in my wheelhouse of market research and helping rural communities,” says Shaw, who also has an appointment with UW–Extension as an environmental communications specialist.

Shaw started work in the valley by talking with stakeholders and identifying the goal of attracting tourists during the shoulder months. He and graduate student Heather Akin then surveyed Kickapoo Valley visitors and wrote a report about tourist demographics, behaviors and feelings. The full report is available at http://go.wisc.edu/kickapoo.

Community organizations in the Kickapoo Valley are using Shaw’s findings to influence their marketing materials and plan new events. Research indicated that excitement, adventure and food-related experiences would attract visitors. An immediate response was the Kickapoo Reserve Tromp and Chomp, a new trail run held in May featuring post-race meals by local chefs and growers. Urban says the event brought at least $6,400 tourist dollars into local economies—and that it will be held annually.

In addition to consulting on new events, Shaw is involved in the Ralph Nuzum Lecture Series, which introduces valley residents to experts on topics such as agriculture, wildlife and sustainability. Shaw also helped establish an Extension video channel to share those lectures with a broader audience and showcase the valley in general. Videos are available at http://uwexvideochannel.org/.

Shaw is optimistic that these ongoing collaborations between UW–Madison, UW–Extension and the Kickapoo Valley Reserve will produce the desired increase in tourism and economic development.

“Each time we attract a new visitor, that person spends around $140 if they stay overnight, so we’d like to see these events continue to help local businesses and residents,” Shaw says.

PHOTO—Natural beauty: A rock bluff along the Kickapoo River, one of the area’s many draws for tourists.

Move Over, Beer

Wisconsin is known for fermented products like cheese, pickles and beer. But now it’s adding even more to that blossoming list: wine and cider. And the Badger State’s 110 wineries and commercial cider makers now have a new resource to help them compete: Nick Smith.

Since he started at CALS earlier this year as the university’s first wine and cider outreach specialist, Smith has been traveling the state, knocking on doors and meeting Wisconsin’s wine and cider makers.

Wine grapes can be difficult to grow in Wisconsin since most varieties prefer warmer climates, but after years researching wine and working with growers in Minnesota, Smith is confident there’s a market for it here, too, given the state’s legacy of fermented products, bustling tourism industry and agricultural diversity.

Smith’s also interested in helping producers realize profits in cider, where it can be hard to compete with large cider makers who sell product for the price of craft beer.

“It’s a relatively rapidly growing industry, especially for cider, which is one of the fastest-growing market segments in terms of percentage growth year after year,” he says.

Smith has blazed a meandering trail to his current position. He was a 19-year-old business management major at the University of Minnesota the day he caught the wine and beer bug. He was making a delivery for one of his campus jobs when he noticed a certain shop across the street.

“There was a homebrew shop right there on campus—I think it was owned by a retired microbiology professor,” he says. “I thought: ‘What is that?’ and instantly, I was hit. It never occurred to me that you could homebrew.”

Smith ended up taking numerous food and fermentation science classes. He then spent a year studying beer and winemaking at Oregon State University before taking a job as a chemist for a commercial winemaker in California.

But the draw back to the Midwest was strong, and he took a position as a research winemaker at the University of Minnesota, where he spent eight years preparing small batches of wine for tasting analysis based on the selections of grape breeders. He also earned a master’s degree in food science.

Just prior to joining CALS, Smith was working as a winemaker in Rochester, Minnesota, but the opportunity to build something from the vineyard (and orchard) up in Wisconsin was too good to turn down.

Since his arrival, Smith has participated in workshops hosted by the wine industry and is gathering input and information about the needs of wine and cider makers in Wisconsin. Many, he says, are new to commercial production and are looking for advice and help in scaling up from homebrew or commercial small-batch operations. Smith, who is funded by state and industry grants, is working with the Wisconsin Winery Association to develop educational outreach tracks for conferences, find speakers and develop short courses for industry, much like the CALS-based Center for Dairy Research, which he says serves as a good model for developing outreach and viticulture partnerships.

As examples, over the summer he hosted an industry workshop on sparkling wine production, which he expects to be a profitable segment of the market in Wisconsin, as well as a preharvest workshop on aspects of fermentation chemistry in winemaking. This fall he’s hosting regional winemaker roundtables at three wineries around the state, offering winemakers an opportunity to meet and discuss wines they are producing.

Smith’s also working to get a fermentation lab bubbling in Babcock Hall, where he currently shares space with ice cream and other frozen-dessert researchers. He may also take students interested in making wine and cider for an independent study course, similar to a beer-brewing course recently led by Jim Steele, head of the fermented foods and beverages program in the Department of Food Science. The department plans to soon offer an undergraduate certificate in fermented foods and beverages.

Smith hopes the revenue generated from workshops will fund additional research on how grape growing affects flavor and aroma development. Wisconsin is, after all, fertile terroir: roughly 10 new wineries, 10 new breweries and 10 new distilleries pop up in the state each year.

“It’s a growing industry, and it’s going to grow without us,” he says. “But the UW can help it grow better.”

Dan Hill MA’88

Dan Hill MA'88

Dan Hill MA’88

Dan Hill serves as a local government specialist at UW–Extension’s Local Government Center (LGC), whose mission is to provide leadership and coordination to UW–Extension educational programs that support local government—serving more than 5,000 locally elected and appointed county, city, village and municipal officials around the state—as well as expand the knowledge base for local government education. Hill’s areas of expertise include open meetings, open records, elections, parliamentary procedure and public policy education. He educates LGC constituents about these matters in a number of ways. “For example, I am frequently invited to speak with groups of local officials about the Wisconsin open meetings law and their responsibility to comply with it,” Hill says. He also serves half-time as Secretary of the Faculty and Staff at UW–Extension. Hill’s CALS degree is in agricultural economics.

Patricia Malone BS’87

Pat Malone BS'87

Pat Malone BS’87

As a community development educator in Trempealeau County, Pat Malone focuses primarily on building the organizational capacity of individuals, businesses, community organizations and local governments to address a range of issues, from water quality and strategic planning to industrial sand mining. She pursues that work by providing education about the issues, facilitation and applied research. Malone, whose degree is in agricultural economics, still loves her job after 27 years. “It’s never the same day, and I get to learn constantly and reinvent myself on a regular basis,” she says. “When I started, I was the ‘bag lady’ of the county, working on solid waste and recycling. Since then I’ve had the opportunity to focus on criminal justice issues, groundwater quality, long-term care reform, and, most recently, industrial sand mining. It’s a grand opportunity to be a lifelong learner.”

The MBA of Dairy

The average age of a Wisconsin farmer is over 56 and rising, and the state has been losing around 500 dairy farms per year. It’s no surprise, then, that experts say it’s critical to prepare young people to step into farm roles in order to keep the state’s $88 billion agricultural economy strong into the future.

But making the transition into dairy farming is complicated, and aspiring farmers often don’t have the capital or the experience to take over an established operation.

Enter the Dairy Grazing Apprenticeship (DGA) program, which is working to address the issue by providing support for young people interested in becoming dairy farmers. Started in 2010, the first-of-its-kind program is administered by the Wisconsin-based nonprofit GrassWorks, Inc., with CALS as a key partner.

Earlier this year, DGA received $750,000 from the U.S. Department of Agriculture’s Beginning Farmer and Rancher Development Program. The funding will enable organizers to improve and expand the program in Wisconsin, as well as explore the possibility of rolling it out to other dairy states.

“It’s a meat-and-potatoes program that really takes people up to the level where they can own and operate their own dairy,” says DGA director Joe Tomandl. “It’s the MBA of dairy.”

Program participants complete 4,000 hours of paid training over two years, most of it alongside experienced dairy farmers, and work their way up from apprentices to Journey Dairy Graziers and Master Dairy Graziers. Although most of that time is spent in on-the-job training, there’s also a significant requirement for related instruction. That’s where CALS comes in.

As part of the program, apprentices attend a seminar about pasture-based dairy and livestock through the Wisconsin School for Beginning Dairy and Livestock Farmers (WSBDF), which is co-sponsored by the CALS-based Center for Integrated Agricultural Systems and the Farm and Industry Short Course. The seminar involves a 32-hour commitment, which is generally fulfilled through distance education and includes instruction from CALS professors from dairy, animal and soil sciences.

“We believe in the Wisconsin Idea and want to make sure our classes are accessible to people who want more education, but preferably close to where they live and work,” says Nadia Alber, a WSBDF outreach coordinator who helps organize the seminar and also serves on the DGA board.

In 2009, GrassWorks, Inc. turned to WSBDF director Dick Cates PhD’83 for guidance and access to a well-respected educational curriculum to help get the DGA up and running—and the WSBDF team has been involved ever since.

“We were just this little nonprofit with a very small budget trying to compete for a big federal grant,” says Tomandl. “For us, it was important to have UW–Madison as a strategic partner.”

As part of the most recent round of funding, DGA’s partners at CALS will lead an effort to quantify the program’s broader impacts.
“They have already proven that participants are moving along to their own farms after the apprenticeship, so they have an established track record,” says Alber. “This new study will look at some of the program’s other impacts, including economic, environmental and social.”

Second Life for Phosphorus

Phosphorus, a nutrient required for growing crops, finds its way from farm fields to our food and eventually to our wastewater treatment plants. At the plants, the nutrient causes major problems, building up in pipes or going on to pollute surface waters.

Brushite bounty: Phil Barak displays brushite produced during trials at the Nine Springs Wastewater Treatment Plant of the Madison Metropolitan Sewerage District. Each jar contains brushite harvested from 30 gallons of anaerobic digest. Photo courtesy of Phil Barak

Brushite bounty: Phil Barak displays brushite produced during trials at the Nine Springs Wastewater Treatment Plant of the Madison Metropolitan Sewerage District. Each jar contains brushite harvested from 30 gallons of anaerobic digest.
Photo by Rick Wayne

But soil science professor Phil Barak has an idea about how to retrieve the nutrient from wastewater in a valuable form—and it started from a basic lab experiment. “I was doing some work on crystallizing phosphorus, just out of pure academic interest,” explains Barak. “That led me to crystallize a mineral called struvite. Then I realized it was forming in wastewater treatment plants as a nuisance.”

If he could form crystals in the lab, he reasoned, why couldn’t it be done in the wastewater treatment plants in a controlled way? It could. And, even better, if he collected the phosphorus early on in the treatment process in the form of a mineral called brushite, he could harvest even more of it.

Beyond removing phosphorus from wastewater, brushite can serve as a nutrient source for growers. While Barak will do further testing to prove its utility, brushite is a phosphate mineral that’s actually been found in agricultural fields for years.

“When conventional phosphorus fertilizers are added to soil, brushite forms. I maintain that we’ve been fertilizing with brushite for decades, but nobody’s been paying attention to it,” says Barak.

Being able to remove phosphorus from wastewater and supply it back to growers is a win-win situation, Barak notes. “We’re collecting phosphorus where it’s localized, at really high concentrations, which is the most economical place to collect it,” says Barak. “This works out in just about every dimension you can consider, from the treatment plants to the cost of recycling phosphorus as opposed to mining it new.”

Graduate students in Barak’s lab suggested that he commercialize the technology and start a company. After the Wisconsin Alumni Research Foundation (WARF) passed on the patent, Barak and his students sought help from the UW Law and Entrepreneurship Clinic. They received two federal Small Business Innovative Research grants, and, with some additional funds from the state, including the Wisconsin Economic Development Corporation, their efforts have turned into a spinoff company: Nutrient Recovery & Upcycling, LLC (NRU).

The company’s next step was a big one. This summer, a phosphorus recovery pilot plant is being implemented in a wastewater treatment plant in Illinois. The pilot project will test the research ideas on a larger scale.

Additionally, the NRU team will participate in the Milwaukee Metropolitan Sewerage District’s granting system to determine if a pilot project would be a good fit in Milwaukee. They hope to start collecting and analyzing data from Illinois by September, using that pilot system to lay the groundwork for others in Milwaukee and beyond.

Plant Prowess

It may look jury-rigged, but it’s cutting-edge science.

In a back room in the university’s Seeds Building, researchers scan ears of corn—three at a time—on a flatbed scanner, the kind you’d find at any office supply store. After running the ears through a shelling machine, they image the de-kerneled cobs on a second scanner.

The resulting image files—up to 40 gigabytes’ worth per day—are then run through a custom-made software program that outputs an array of yield-related data for each individual ear. Ultimately, the scientists hope to link this type of information—along with lots of other descriptive data about how the plants grow and what they look like—back to the genes that govern those physical traits. It’s part of a massive national effort to deliver on the promise of the corn genome, which was sequenced back in 2009, and help speed the plant breeding process for this widely grown crop.

“When it comes to crop improvement, the genotype is more or less useless without attaching it to performance,” explains Bill Tracy, professor and chair of the Department of Agronomy. “The big thing is phenotyping—getting an accurate and useful description of the organism—and connecting that information back to specific genes. It’s the biggest thing in our area of plant sciences right now, and we as a college are playing a big role in that.”

No surprise there. Since the college’s founding, plant scientists at CALS have been tackling some of the biggest issues of their day. Established in 1889 to help fulfill the University of Wisconsin’s land grant mission, the college focused on supporting the state’s fledgling farmers, helping them figure out how to grow crops and make a living at it. At the same time, this practical assistance almost always included a more basic research component, as researchers sought to understand the underlying biology, chemistry and physics of agricultural problems.

That approach continues to this day, with CALS plant scientists working to address the ever-evolving agricultural and natural resource challenges facing the state, the nation and the world. Taken together, this group constitutes a research powerhouse, with members based in almost half of the college’s departments, including agronomy, bacteriology, biochemistry, entomology, forest and wildlife ecology, genetics, horticulture, plant pathology and soil science.

“One of our big strengths here is that we span the complete breadth of the plant sciences,” notes Rick Lindroth, associate dean for research at CALS and a professor of entomology. “We have expertise across the full spectrum—from laboratory to field, from molecules to ecosystems.”

This puts the college in the exciting position of tackling some of the most complex and important issues of our time, including those on the applied science front, the basic science front—and at the exciting new interface where the two approaches are starting to intersect, such as the corn phenotyping project.

“The tools of genomics, informatics and computation are creating unprecedented opportunities to investigate and improve plants for humans, livestock and the natural world,” says Lindroth. “With our historic strength in both basic and applied plant sciences, the college is well positioned to help lead the nation at this scientific frontier.”

It’s hard to imagine what Wisconsin’s agricultural economy would look like today without the assistance of CALS’ applied plant scientists.

The college’s early horticulturalists helped the first generation of cranberry growers turn a wild bog berry into an economic crop. Pioneering plant pathologists identified devastating diseases in cabbage and potato, and then developed new disease-resistant varieties. CALS agronomists led the development of the key forage crops—including alfalfa and corn—that feed our state’s dairy cows.

Fast-forward to 2015: Wisconsin is the top producer of cranberries, is third in the nation in potatoes and has become America’s Dairyland. And CALS continues to serve the state’s agricultural industry.

The college’s robust program covers a wide variety of crops and cropping systems, with researchers addressing issues of disease, insect and weed control; water and soil conservation; nutrient management; crop rotation and more. The college is also home to a dozen public plant-breeding programs—for sweet corn, beet, carrot, onion, potato, cranberry, cucumber, melon, bean, pepper, squash, field corn and oats—that have produced scores of valuable new varieties over the years, including a number of “home runs” such as the Snowden potato, a popular potato chip variety, and the HyRed cranberry, a fast-ripening berry designed for Wisconsin’s short growing season.

While CALS plant scientists do this work, they also train the next generation of researchers—lots of them. The college’s Plant Breeding and Plant Genetics Program, with faculty from nine departments, has trained more graduate students than any other such program in the nation. Just this past fall, the Biology Major launched a new plant biology option in response to growing interest among undergraduates.

“If you go to any major seed company, you’ll find people in the very top leadership positions who were students here in our plant-breeding program,” says Irwin Goldman PhD’91, professor and chair of the Department of Horticulture.

Among the college’s longstanding partnerships, CALS’ relationship with the state’s potato growers is particularly strong, with generations of potato growers working alongside generations of CALS scientists. The Wisconsin Potato and Vegetable Growers Association (WPVGA), the commodity group that supports the industry, spends more than $300,000 on CALS-led research each year, and the group helped fund the professorship that brought Jeff Endelman, a national leader in statistical genetics, to campus in 2013 to lead the university’s potato-breeding program.

“Research is the watchword of the Wisconsin potato and vegetable industry,” says Tamas Houlihan, executive director of the WPVGA. “We enjoy a strong partnership with CALS researchers in an ongoing effort to solve problems and improve crops, all with the goal of enhancing the economic vitality of Wisconsin farmers.”

Over the decades, multi-disciplinary teams of CALS experts have coalesced around certain crops, including potato, pooling their expertise.

“Once you get this kind of core group working, it allows you to do really high-impact work,” notes Patty McManus, professor and chair of the Department of Plant Pathology and a UW–Extension fruit crops specialist.

CALS’ prowess in potato, for instance, helped the college land a five-year, $7.6 million grant from the U.S. Department of Agriculture to help reduce levels of acrylamide, a potential carcinogen, in French fries and potato chips. The multistate project involves plant breeders developing new lines of potato that contain lower amounts of reducing sugars (glucose and fructose) and asparagine, which combine to form acrylamide when potatoes are fried. More than a handful of conventionally bred, low-acrylamide potato varieties are expected to be ready for commercial evaluations within a couple of growing seasons.

“It’s a national effort,” says project manager Paul Bethke, associate professor of horticulture and USDA-ARS plant physiologist. “And by its nature, there’s a lot of cross-talk between the scientists and the industry.”

Working with industry and other partners, CALS researchers are responding to other emerging trends, including the growing interest in sustainable agricultural systems.

“Maybe 50 years ago, people focused solely on yield, but that’s not the way people think anymore. Our crop production people cannot just think about crop production, they have to think about agroecology, about sustainability,” notes Tracy. “Every faculty member doing production research in the agronomy department, I believe, has done some kind of organic research at one time or another.”

Embracing this new focus, over the past two years CALS has hired two new assistant professors—Erin Silva, in plant pathology, who has responsibilities in organic agriculture, and Julie Dawson, in horticulture, who specializes in urban and regional food systems.

“We still have strong partnerships with the commodity groups, the cranberries, the potatoes, but we’ve also started serving a new clientele—the people in urban agriculture and organics that weren’t on the scene for us 30 years ago,” says Goldman. “So we have a lot of longtime partners, and then some new ones, too.”

Working alongside their applied colleagues, the college’s basic plant scientists have engaged in parallel efforts to reveal fundamental truths about plant biology—truths that often underpin future advances on the applied side of things.

For example, a team led by Aurélie Rakotondrafara, an assistant professor of plant pathology, recently found a genetic element—a stretch of genetic code—in an RNA-based plant virus that has a very useful property. The element, known as an internal ribosome entry site, or IRES, functions like a “landing pad” for the type of cellular machine that turns genes—once they’ve been encoded in RNA—into proteins. (A Biology 101 refresher: DNA—>RNA—>Protein.)

This viral element, when harnessed as a tool of biotechnology, has the power to transform the way scientists do their work, allowing them to bypass a longstanding roadblock faced by plant researchers.

“Under the traditional mechanism of translation, one RNA codes for one protein,” explains Rakotondrafara. “With this IRES, however, we will be able to express several proteins at once from the same RNA.”

Rakotondrafara’s discovery, which won an Innovation Award from the Wisconsin Alumni Research Foundation (WARF) this past fall and is in the process of being patented, opens new doors for basic researchers, and it could also be a boon for biotech companies that want to produce biopharmaceuticals, including multicomponent drug cocktails, from plants.

Already, Rakotondrafara is working with Madison-based PhylloTech LLC to see if her new IRES can improve the company’s tobacco plant-based biofarming system.

“The idea is to produce the proteins we need from plants,” says Jennifer Gottwald, a technology officer at WARF. “There hasn’t been a good way to do this before, and Rakotondrafara’s discovery could actually get this over the hump and make it work.”

While Rakotondrafara is a basic scientist whose research happened to yield a powerful application, CALS has a growing number of scientists—including those involved in the corn phenotyping project—who are working at the exciting new interface where basic and applied research overlap. This new space, created through the mind-boggling advances in genomics, informatics and computation made in recent years, is home to an emerging scientific field where genetic information and other forms of “big data” will soon be used to guide in-the-field plant-breeding efforts.

Sequencing the genome of an organism, for instance, “is almost trivial in both cost and difficulty now,” notes agronomy’s Bill Tracy. But a genome—or even a set of 1,000 genomes—is only so helpful.

What plant scientists and farmers want is the ability to link the genetic information inside different corn varieties—that is, the activity of specific genes inside various corn plants—to particular plant traits observed in the greenhouse or the field. The work of chronicling these traits, known as phenotyping, is complex because plants behave differently in different environments—for instance, growing taller in some regions and shorter in others.

“That’s one of the things that the de Leon and Kaeppler labs are now moving their focus to—massive phenotyping. They’ve been doing it for a while, but they’re really ramping up now,” says Tracy, referring to agronomy faculty members Natalia de Leon MS’00 PhD’02 and Shawn Kaeppler.

After receiving a large grant from the Great Lakes Bioenergy Research Center in 2007, de Leon and Kaeppler decided to integrate their two research programs. They haven’t looked back. With de Leon’s more applied background in plant breeding and field evaluation, plus quantitative genetics, and with Kaeppler’s more basic corn genetics expertise, the two complement each other well. The duo have had great success securing funding for their various projects from agencies including the National Science Foundation, the U.S. Department of Agriculture and the U.S. Department of Energy.

“A lot of our focus has been on biofuel traits, but we measure other types of economically valuable traits as well, such as yield, drought tolerance, cold tolerance and others,” says Kaeppler. Part of the work involves collaborating with bioinformatics experts to develop advanced imaging technologies to quantify plant traits, projects that can involve assessing hundreds of plants at a time using tools such as lasers, drone-mounted cameras and hyperspectral cameras.

This work requires a lot of space to grow and evaluate plants, including greenhouse space with reliable climate control in which scientists can precisely measure the effects of environmental conditions on plant growth. That space, however, is in short supply on campus.

“A number of our researchers have multimillion-dollar grants that require thousands of plants to be grown, and we don’t always have the capacity for it,” says Goldman.

That’s because the Walnut Street Greenhouses, the main research greenhouses on campus, are already packed to the gills with potato plants, corn plants, cranberries, cucumbers, beans, alfalfa and dozens of other plant types. At any given moment, the facility has around 120 research projects under way, led by 50 or so different faculty members from across campus.

Another bottleneck is that half of the greenhouse space at Walnut Street is old and sorely outdated. The facility’s newer greenhouses, built in 2005, feature automated climate control, with overlapping systems of fans, vents, air conditioners and heaters that help maintain a pre-set temperature. The older houses, constructed of single-pane glass, date back to the early 1960s and present a number of challenges to run and maintain. Some don’t even have air conditioning—the existing electrical system can’t handle it. Temperatures in those houses can spike to more than 100 degrees during the summer.

“Most researchers need to keep their plants under fairly specific and constant conditions,” notes horticultural technician Deena Patterson. “So the new section greenhouse space is in much higher demand, as it provides the reliability that good research requires.”

To help ameliorate the situation, the college is gearing up to demolish the old structures and expand the newer structure, adding five more wings of greenhouse rooms, just slightly north of the current location—out from under the shadow of the cooling tower of the West Campus Co-Generation Facility power plant, which went online in 2005. The project, which will be funded through a combination of state and private money, is one of the university’s top building priorities.

Fortunately, despite the existing limitations, the college’s plant sciences research enterprise continues apace. Kaeppler and de Leon, for example, are involved in an exciting phenotyping project known as Genomes to Fields, which is being championed by corn grower groups around the nation. These same groups helped jump-start an earlier federal effort to sequence the genomes of many important plants, including corn.

“Now they’re pushing for the next step, which is taking that sequence and turning it into products,” says Kaeppler. “They are providing initial funding to try to grow Genomes to Fields into a big, federally funded initiative, similar to the sequencing project.”

It’s a massive undertaking. Over 1,000 different varieties of corn are being grown and evaluated in 22 environments across 13 states and one Canadian province. Scientists from more than a dozen institutions are involved, gathering traditional information about yield, plant height and flowering times, as well as more complex phenotypic information generated through advanced imaging technologies. To this mountain of data, they add each corn plant’s unique genetic sequence.

“You take all of this data and just run millions and billions of associations for all of these different traits and genotypes,” says de Leon, who is a co-principal investigator on the project. “Then you start needing supercomputers.”

Once all of the dots are connected—when scientists understand how each individual gene impacts plant growth under various environmental conditions—the process of plant breeding will enter a new sphere.

“The idea is that instead of having to wait for a corn plant to grow for five months to measure a certain trait out in the field, we can now take DNA from the leaves of little corn seedlings, genotype them and make decisions within a couple of weeks regarding which ones to advance and which to discard,” says de Leon. “The challenge now is how to be able to make those types of predictions across many environments, including some that we have never measured before.”

To get to that point, notes de Leon, a lot more phenotypic information still needs to be collected—including hundreds and perhaps thousands more images of corn ears and cobs taken using flatbed scanners.

“Our enhanced understanding of how all of these traits are genetically controlled under variable environmental conditions allows us to continue to increase the efficiency of plant improvement to help meet the feed, food and fiber needs of the world’s growing population,” she says.

Sidebar:

The Bigger Picture

Crop breeders aren’t the only scientists doing large-scale phenotyping work. Ecologists, too, are increasingly using that approach to identify the genetic factors that impact the lives of plants, as well as shape the effects of plants on their natural surroundings.

“Scientists are starting to look at how particular genes in dominant organisms in an environment—often trees—eventually shape how the ecosystem functions,” says entomology professor Rick Lindroth, who also serves as CALS’ associate dean for research. “Certain key genes are driving many fantastically interesting and important community- and ecosystem-level interactions.”

How can tree genes have such broad impacts? Scientists are discovering that the answer, in many cases, lies in plant chemistry.
“A tree’s chemical composition, which is largely determined by its genes, affects the community of insects that live on it, and also the birds that visit to eat the insects,” explains Lindroth. “Similarly, chemicals in a tree’s leaves affect the quality of the leaf litter on the ground below it, impacting nutrient cycling and nitrogen availability in nearby soils.”

A number of years ago Lindroth’s team embarked on a long-term “genes-to-ecosystems” project (as these kinds of studies are called) involving aspen trees. They scoured the Wisconsin landscape, collecting root samples from 500 different aspens. From each sample, they propagated three or four baby trees, and then in 2010 planted all 1,800 saplings in a so-called “common garden” at the CALS-based Arlington Agricultural Research Station.

“The way a common garden works is, you put many genetic strains of a single species in a similar environment. If phenotypic differences are expressed within the group, then the likelihood is that those differences are due to their genetics, not the environment,” explains Lindroth.

Now that the trees have had some time to grow, Lindroth’s team has started gathering data about each tree—information such as bud break, bud set, tree size, leaf shape, leaf chemistry, numbers and types of bugs on the trees, and more.

Lindroth and his partners will soon have access to the genetic sequence of all 500 aspen genetic types. Graduate student Hilary Bultman and postdoctoral researcher Jennifer Riehl will do the advanced statistical analysis involved—number crunching that will reveal which genes underlie the phenotypic differences they see.

In this and in other projects, Lindroth has called upon the expertise of colleagues across campus, developing strategic collaborations as needed. That’s easy to do at UW–Madison, notes Lindroth, where there are world-class plant scientists working across the full spectrum of the natural resources field—from tree physiology to carbon cycling to climate change.

“That’s the beauty of being at a place like Wisconsin,” Lindroth says.

Want to help? The college welcomes your gift toward modernizing the Walnut Street Greenhouses. To donate, please visit: supportuw.org/giveto/WalnutGreenhouse. We thank you for your contribution.
Continue reading

More Milk for China

Pamela Ruegg

Pamela Ruegg

Tell us what you are doing in China.
I’m leading an interdisciplinary team from UW– Madison in working with the Nestle company to help develop a $400 million Dairy Farming Institute (DFI) in northeastern China. Our role in this, through a three-year, $1.7 million agreement, is to develop a teaching curriculum for farmers, consultants, veterinarians and others throughout China.

Can you describe what the Chinese are trying to address with these dairy initiatives?
There is an enormous demand for animal proteins, specifically milk protein, in China. People want to feed their children high-quality proteins, just like we want to feed our children high-quality proteins. And one of the best ways to do that is with our very nutritious product, milk. This growing demand in China is so large that they’re estimating that, by 2020, meeting that need would require an additional volume of milk equal to the entire output of the dairy industries in Australia and New Zealand combined. And that need can’t bemet entirely by imports. So there’s a need to develop the Chinese dairy industry. The U.S. dairy industry and Wisconsin dairy suppliers are engaged in that work, and we are as well.

What can we here at CALS and in Wisconsin offer this new initiative?
Our role is a unique example of how the status of the Wisconsin dairy industry is recognized globally. We’re recognized here in Wisconsin as being leaders in the dairy industry, and they came to us because of that. The Chinese industry is seeking that knowledge base that we have here, they’re seeking the technology, and, specifically, the education we have here. They came to us and asked, “Could you help us develop a curriculum to help raise the overall level of our science knowledge base in a way that will result in safer and higher-quality food products?”

Please describe the project—how long is it going to last, how many people does it involve?
It will ultimately involve most people in the Department of Dairy Science and many people outside of it—for example, from the School of Veterinary Medicine and the CALS departments of biological systems engineering and agricultural economics. We’ve also got some curriculum designers from other colleges involved. As noted, our initial contract is for three years. The first courses took place this past fall—a threeday, introductory-level feeding course and a more advanced course about reproductive management of dairy cows. It is very likely that the project will go well beyond the three-year initial course development period. The institute itself is meant to be permanent.

How did the first courses go? Who taught them and what did they report back?
Both initial courses were fully subscribed, and all indications are that they were very well received. The learners especially liked the practical, on-farm training and case studies that reinforced the scientific principles that made up the lecture portions. For the first offering of these courses, several ofour faculty and staff from dairy science—professors Dave Combs and Milo Wiltbank, along with outreach program manager Karen Nielsen—flew to China to participate in the opening ceremony for the DFI and to work alongside industry partners and Chinese DFI trainers in delivering the classes. Ultimately, after the trainers are fully competent with the course material, level 1 and 2 courses will be offered without direct teaching by UW faculty. We will continue to develop and revise curriculum for these levels and provide oversight and quality control. Higher-level courses for veterinarians and top managers will continue to be taught by UW faculty.

Describe the partnership with Nestle.
Nestle is the leader and the primary initial investor in the Dairy Farming Institute, but there are partners from all around the world, including our own dairy farmers here in Wisconsin. Land O’Lakes, which is, of course, a cooperative, is the feed partner at the Dairy Farming Institute. And there are other companies in Wisconsin as well who have invested in the Dairy Farming Institute. Our participation is also meant to support their success.

How may this benefit the state of Wisconsin?
It will certainly lead to additional opportunities for our students here. We’re hoping that as this institute gets off the ground, we’ll be able to offer internships and have student exchanges. We also, through our participation, are supporting the Wisconsin businesses.

“We’re hoping our participation will enhance the markets for Wisconsin agribusinesses.”

Can you please look into your crystal ball for a moment and imagine what the Chinese dairy business might look like five years, 10 years, 20 years from now?
The first time I went to China was 10 years ago, and in that 10 years it’s just been remarkable, the transformation of that industry. The industry is rapidly growing. There’s a lot of investment in it. This particular project is meant to stimulate the development of Wisconsin-style farms—midsize dairies, for the most part, that are owned by private entrepreneurs, private farmers just like here. The goal of Nestle is to kind of replicate what we’ve got here that’s so beneficial for our state and our industry, where we have a lot of independent producers producing milk in a very sustainable fashion.


 

Pamela Ruegg , DVM, is a CALS/UW–Extension dairy science professor and milk quality specialist whose expertise has taken her around the world. She has done international consulting work on milk quality and safety as well as enhancing on-farm implementation of best management practices to improve herd health. Her latest work has taken her to the northeast province of Heilongjiang, China, where the Nestle company is establishing a dairy training facility. The Dairy Farming Institute is a key element of Nestle’s effort to establish a larger, more reliable source of high-quality milk to supply its processing facilities in China. The institute will include a training center and three demonstration farms to teach farmers and dairy industry professionals the skills needed to manage larger, more sophisticated dairy operations. We sat down with Ruegg to discuss the university’s role in it.

Chris Barrett PhD’94

Chris Barrett PhD’94 Agricultural and Applied Economics • In January Chris Barrett began a new position as the David J. Nolan Director of Cornell University’s Charles H. Dyson School of Applied Economics and Management, whose undergraduate and graduate programs rank in the top five nationwide. Barrett takes on that leading role in educating applied economists at a crucial time for the field, he says, citing global challenges posed by the rapid growth in demand for food, feed, fuel and fiber. As a CALS graduate student Barrett found a collaborative network of scholars and practitioners who have been formative in his success as both a teacher and a scholar. Among Barrett’s experiences as a CALS student, he fondly remembers enjoying Babcock ice cream with his children while watching the UW Marching Band practice.

Rogier van den Brink PhD’90

Rogier van den Brink PhD’90 Agricultural and Applied Economics • As a Washington, D.C.-based lead economist with the World Bank in the department of poverty reduction and economic management, Rogier van den Brink works on economic policy and related concerns with a number of countries in Southeast Asia, his region of interest. Recently he helped establish a multimillion-dollar budget in support of relief operations following Typhoon Haiyan in the Philippines. Now a Distinguished Alumni Lecturer with UW-Madison, van den Brink became aware of the “special powers” of agriculture in reducing poverty while a student at CALS, he says, a lesson that his career continues to affirm. When he’s not working, van den Brink pursues music production, an interest he discovered at Amy’s Cafe and Bar in Madison. Sometimes he mixes work and pleasure, most recently when he recorded an album, “Zsa Zsa Exactly,” while in Mongolia. Proceeds from the album will go to Typhoon Haiyan relief efforts.

Diana Fletschner MS’95 PhD’02

Diana Fletschner MS’95 PhD’02 Agricultural and Applied Economics • China, Colombia, Russia, Peru and Uganda are just some of the places in which Diana Fletschner has had the opportunity to work. Fletschner serves as senior director of research, monitoring and evaluation for the Seattle-based NGO Landesa, which works to secure land rights for the world’s poorest populations. Fletschner’s role includes evaluating projects, fostering a network of professionals aimed at strengthening women’s land rights, and supporting national and international advocacy of land issues. For Fletschner, being a CALS student served as a platform for exploring new experiences from around the world as well as the opportunity to build formative relationships with “mentors with a capital M,” as she puts it.

Joseph Glauber PhD’84

Joseph Glauber PhD’84 Agricultural and Applied Economics • Henry C. Taylor, the first chief economist with the USDA, was a Badger—and today another alum, Joseph Glauber, holds that title. Glauber’s duties include preparing the department’s agricultural forecasts and projections as well as advising the Secretary of Agriculture on the economic implications of agricultural legislation. Time spent around the chalkboards discussing and debating economic issues belongs to Glauber’s fondest memories of CALS. He will also forever value the Department of Agricultural and Applied Economics for its diversity and an open climate that facilitated forming lifelong friendships. In his free time Glauber bikes 3,500 to 4,000 miles a year, including commuting to work—a hobby, he explains, that balances his love of food.