A Big-City Ag High School Blossoms

It’s just after lunch at Milwaukee Vincent, and students are settling into their two-hour Advanced Animal Science class. Using their fingers to write on an electronic whiteboard, they quickly assign themselves animal care tasks. There is much to keep them busy.

While some kids clean the rabbit and chinchilla cages, others try to hold the hedgehog without getting pricked or feed the 1,000 crickets purchased for conducting breeding experiments. (They eat fresh vegetables.) The classroom is abuzz—not with the beehives located a few hundred yards away outside—but with talk about the newest member of the menagerie, a goat named Susan. A half dozen students head out to the pole shed that now accommodates Susan’s pen. Water sloshes out of the five-gallon buckets students pull in a wagon toward the goat, the 26 chickens and the two ducks. The refrigerator is already full of eggs, but kids find seven more under one broody bird.

Forty-two buses bring students to the 70-acre North Side campus from all parts of Milwaukee. While the school was built in the late ’70s to focus on international studies, agribusiness and natural resources, it has strayed from that specialization over the past few decades.

But new life is being breathed into the school’s original mission, in part due to the infusion of funding through a USDA grant obtained by the University of Wisconsin–Madison to develop an agricultural curriculum at the high school. This, plus four new ag teachers and a principal who is dedicated to the school’s agricultural roots, are starting to turn things around.

“Agriculture may sound like an unusual choice for a big-city high school, but our expansive campus and, more importantly, significant career opportunities in the field, make for a strong match,” says principal Daryl Burns. “All the agricultural pathways help students build the skills needed for in-demand STEM careers and the skills needed for success in almost any career, as well as in college and in life.”

Each freshman is required to take a yearlong Introduction to Agricultural Sciences class. Students can then pursue four different pathways: Animal Science, Horticulture Science, Food Science and Environmental Science. A three-room greenhouse is back in use, and an enormous vegetable garden, chicken coop, animal room, apiary and aquaponics facility in which fish and plants are grown together have been added.

And the school has been renamed Vincent Agricultural High School. Gail Kraus, an agricultural outreach specialist, is helping the Milwaukee Public Schools initiative to see Vincent grow into its new name. Now in her fourth year there, she is funded through the CALS-based Dairy Coordinated Agricultural Project grant.

“This transformation will provide Vincent students the opportunity to engage in hands-on learning that builds the necessary knowledge and skills for one of Wisconsin’s largest industries,” says Kraus.

Much of the inspiration for bringing the school back to its roots comes from CALS agronomy professor Molly Jahn, who had visited and was impressed by the Chicago High School for Agricultural Science (CHSAS). There, students clamor for enrollment space because of its curriculum and reputation as a safe school that promotes academic excellence.

“We want Vincent to be as desirable to attend as CHSAS,” says Jahn. “Through the new ag curriculum, students may be prepared for jobs right out of high school or go on to college to study things they would not otherwise have been exposed to. I envision the day when the ag curriculum at Vincent will be used as a model for other urban high schools in Wisconsin and elsewhere.”

Some Vincent students have completed the college application process. Jeremy Shelly, a senior who is a member of the National Honor Society, wants to become a veterinarian. Dawson Yang is aiming for UW–Green Bay.

“I took the Intro to Environmental Sciences class here and loved it,” says Yang, who also likes to hunt, fish and camp. “I want to study environmental sciences and maybe one day work for the Department of Natural Resources.”

The Island of Giant Mice

Two thousand miles east of the coast of Argentina, Gough Island rises out of the Atlantic Ocean in an awesome display of ancient volcanic activity. A green carpet of windswept mosses and grasses covers 35 square miles of jagged peaks and steeply sloping valleys. Waterfalls spill out of craggy cliffs and fall hundreds of feet to the sea, which runs uninterrupted for another 1,700 miles before crashing into the tip of South Africa. It is one of the most remote places on our planet.

Four miles west of the University of Wisconsin– Madison campus, the Charmany Instructional Facility is a low-slung labyrinth of concrete hallways lined by bright fluorescent lights and permeated with a smell that is equal parts animal and antiseptic. Part of the UW School of Veterinary Medicine, Charmany is nearly half a world away from Gough Island (pronounced “Goff ”). Yet the two locations share a common trait— they both are home to the largest mice on Earth.

In terms of body size and weight, Gough Island mice are twice the size of their mainland cousins, notes Bret Payseur, a geneticist with a joint appointment in CALS and the School of Medicine and Public Health. “The amazing thing about them being twice the size is that they’ve only been on the island a couple of hundred years,” he says. The island’s early rodent settlers were a more moderate-sized strain of Mus musculus, house mice stowaways in the holds of sealing ships from Western Europe. But somewhere along the line, Gough Island mice outgrew that ancestry—doubling in size over the course of only a few hundred generations. “That’s incredibly rapid evolutionary change,” Payseur says. “It’s some of the most rapid that I know about.”

In the canon of origin stories, however, this tale reads more like a mystery. How did the Gough Island mice get so big so quickly? It could be that a genetic mutation proved so advantageous that huge mice became the norm. Or maybe conditions on the island favored preexisting genetic traits that had lain dormant until the mice became castaways. For the time being, however, the Gough mouse story is transcribed only in A’s, T’s, C’s and G’s—the nucleic acids that write genetic code. Payseur hopes to translate that text. What he finds could not only shed light on evolution in action. It could also help illuminate the genetic mechanisms underlying human metabolic diseases like obesity and diabetes.

The Island Rule

While Gough Island mice are unusually large, it isn’t unusual for small animals on islands to grow bigger than their mainland counterparts. The phenomenon is often referred to as the “island rule,” which states that, in general, small animals tend to get bigger and large animals tend to get smaller once they’ve been island castaways for some period of time. There are, of course, exceptions. But from giant Komodo dragons to extinct pygmy mammoths, examples of the island rule run throughout the animal kingdom.

The gigantism effect of this rule seems to be especially pronounced in rodents. Human history is full of daring adventure on the high seas involving fearless mariners and the obligatory stowaways—mice and rats. As a result, the world’s islands are full of transplanted rodents. Biologist J. Bristol Foster first posited the island rule in a 1964 paper in the journal Nature, titled “The Evolution of Mammals on Islands.” In his study, Foster looked at 69 populations of island mice off the coasts of Western Europe and North America. The mice in 60 of those populations were measurably larger than their mainland cousins. Since that study, time and again, scientists find mice and rats on islands that are markedly bigger than genetically similar mainland populations.

This is notable because, in evolution, random genetic mutations or suddenly shifting environmental conditions can lead a species down a certain path. Which means that chance plays a big role in charting a species’ history. “If you ‘run the tape’ once and go back and run it again,” Payseur says, “you would expect different outcomes because of that role of chance.” When patterns like the island rule appear in evolution, he says, “People get very excited. It suggests that what underlies the patterns is a common mechanism that would tell us something important about how evolution works.”

Payseur’s scientific background is anchored in evolutionary biology, and the natural history of species on islands has fascinated him throughout his career. After early work with primates in Madagascar, Payseur realized that, while there is a lot one can do in primate research, keeping captive colonies of lemurs in a lab and breeding the thousands of crosses needed to actually get at answers wasn’t one of them. So he turned his attention to mice.

“The great thing about house mice—and I know most people don’t think house mice are great—is that the strains or lines of mice that people study in the lab are descended from wild house mice, including the wild mice that often inhabit islands,” Payseur says. “So they’re kind of cousins evolutionarily and share a lot of the same traits. That means we can use the genetic tools developed for the lab strains of mice to understand what’s happening in wild mice.”

He’s looking to these small creatures to answer some very big questions. “In the very long term, what I would like to answer with this research is, ‘What types of genetic changes are responsible for the extreme body size on islands?” Payseur says. “Are they the same on different islands? Do we see the same genes popping up over and over again, or do organisms take different paths to get big?”

Knowing that he would have the time, money and resources to deal with only a single strain of island mouse at a time, Payseur decided to start with the most extreme example of the island rule that he could find. He turned to colleagues who studied house mice in the field—and every one of them pointed him to Gough Island.

An Incredible Journey

Most researchers simply order mice via catalog, usually from what Payseur calls “the world center for mouse genetics,” the Jackson Laboratory in Maine. A copy of their glossy catalog lets researchers pick trait-specific lines of mice, from body size and coat color to preassigned conditions like immunodeficiency. Then, simply place an order and wait a few days for the mail to arrive. Gough Island mice aren’t in that catalog. Which means that Payseur had to figure out a way to get mice from an incredibly remote island with a grand total of six to eight full-time human residents, all of whom were busy with their year-long stint staffing the South African National Antarctic Programme’s weather station.

The solution came in the form of an unusual and macabre adaptation of behavior in Gough Island mice. In addition to developing bigger bodies in their few hundred years on the island, they have also developed an appetite for bigger food—the chicks of nesting seabirds, which they, quite literally, nibble to death. Luckily for Payseur, there are quite a few people concerned about those seabirds.

Gough Island is officially a possession of Britain and part of the Dependency of Tristan de Cunha. It is also listed as a World Heritage Site by the United Nations Educational, Scientific and Cultural Organization, which recognizes Gough as a pristine, primarily untouched ecosystem. Its towering cliffs, according to the UNESCO description of the island, “host some of the most important seabird colonies in the world,” from the endangered Tristan albatross to the Atlantic petrel to the Northern Rockhopper penguin. Under such circumstances, a population of non-native, quick-breeding, bird-eating mice is of grave concern—especially to the governments and scientists tasked with preserving the island’s biodiversity.

Peter Ryan, director of the Percy FitzPatrick Institute of African Ornithology at the University of Cape Town, South Africa, says that, especially where petrels and albatrosses are concerned, Gough Island mice are a threat to breeding populations. Ryan has been an honorary conservation officer in the Tristan de Cunha islands since 1989 and has witnessed the decline in seabirds firsthand. When Payseur reached out to him in 2008, Ryan was working with Richard Cuthbert, a scientist at the Royal Society for the Protection of Birds, on a census of sorts to help the British government plan an intervention—or, rather, an eradication.

The mice “were easy enough to catch,” Ryan wrote in an email recalling Payseur’s request. “They occur at very high densities and we’d been live-catching lots of mice to estimate their movements and densities and to conduct poison trials to ensure that all were susceptible to the poison bait.” Ironically, in order to study how best to kill them, the researchers had the live traps, food, bedding and other paraphernalia needed to keep the mice alive for study.

The “big issue” Ryan recalls, was shipping them. Eventually, the crew of the S.A. Agulhas, a South African Antarctic research vessel, agreed to give the mice a lift, but “Even this was a bit tricky, because we had to convince them that the mice wouldn’t be able to escape.” In the fall of 2008, 50 Gough Island mice boarded a boat and took the return trip to the mainland, specifically Cape Town, South Africa. After a lot of paperwork they were sent to Johannesburg, with inspections and quarantines and mountains of paperwork piling up as they made their way by plane to Europe, then to Chicago and, in a final car ride, to the campus of the University of Wisconsin–Madison, where postdoctoral researcher Melissa Gray was waiting.

That September, Gray had just begun her stint in Payseur’s lab. The idea of working with mice excited her, since, as with Payseur’s initial study of primates in Madagascar, the Channel Island foxes she had been working on promised to be a difficult study organism. When a mentor suggested she reach out to Payseur, Gray says, “It was a perfect connection.” She had a background working on island populations and the genetics of size and “Bret already had this project and nobody to work on it.” Plus, she wouldn’t have to wait long to get going. “I started in Bret’s lab in September,” Gray recalls, “and the mice arrived in late October.”

Immediately upon their arrival, the Gough Island mice alleviated any concerns about their suitability as a study subject. “Basically it was a cardboard box with some breathing holes and food stuffed inside,” Gray recalls. But when she opened the box, “It was amazing,” she recalls. Ryan had sent 50 mice off to Wisconsin. Forty-five survived the trip and, even better, they’d managed to produce a couple of litters along the way. They hadn’t even begun their experiment, and already the Payseur Lab was growing a colony of Gough mice. “In a way, we ended up with more than we started with, which is crazy with the amount of stress they were under,” Gray says.

After that initial excitement wore off, the real work began. First, Gray had to randomly breed several sets of mice to ensure that their large size was genetic and not the result of conditions on the island. When those lines came out as big as the wild-born mice, she could turn her attention to creating the first lab-raised line of Gough Island mice, inbreeding some promising strains of mice to create lines that were genetically identical, which makes gene mapping much easier. These mice would then serve as the lab’s breeding colony, slated as mates for lab mice with a mainland heritage.

One way to think about the process—to borrow a metaphor from Mark Nolte, a current postdoctoral researcher in the Payseur Lab—is to imagine two decks of playing cards, one red and the other blue, where each card is a gene. Each deck represents a chromosome, a long strand of DNA wrapped around proteins that carries genetic instructions from a parent to its offspring. When sexual reproduction occurs, each parent contributes a copy of one of their two chromosomes to their offspring.

Imagine the Gough Island mice as having two blue decks of cards—one deck for each chromosome—and the mainland mice as having two red decks. Their initial mating yields what’s called a “filial generation one,” or an F1 baby mouse with two distinct chromosomes, one with all blue cards and the other with all red cards. But when an F1 mouse mates with another F1 mouse, those decks get shuffled. These “filial generation 2,” or F2 mice, hold the first key to untangling the riddle of the evolution of Gough Island’s giant mice.

Breaking the Code

In a small, windowless room at the Charmany Instructional Facility, doctoral candidate Michelle Parmenter lifts two wriggling brown mice out of separate plastic cages by the base of their tails. One is from a line of laboratory mouse with a lineage that runs, if one looks far enough back, to a population of U.S. house mouse. The other is also a strain of laboratory mouse, although it’s of the lab’s own creation—its Gough Island heritage evident in the way it dwarfs its companion when nestled side by side in Parmenter’s hand.

Parmenter, Nolte and a half-dozen Payseur Lab undergrads spend a large portion of their time taking measurements, plopping each of the 480 mice in the room—increasingly inbred descendants of the original Gough mice—one by one into an empty container of French onion dip and putting it on a scale.

Parmenter has slipped on tough blue “bite gloves” before handling the mice— and one mouse’s attempted nibbles remind her why she needs them. “Okay, you’re trying to bite me,” she announces, putting the critter down. “These bite gloves are good, but they’re only so good.”

A smaller mouse, on the other hand, sits meekly in her palm. Parmenter and Nolte say there are a lot of anecdotal differences in behavior between the Gough line of mice and their mainland counterparts. Gough mice scrabble at the corners of their clear plastic cages and frantically scale the grates near their water bottles like monkey bars. The mainland mice spend more time quietly nestled in the shredded paper bedding provided for burrows. When working with the mice, Parmenter and Nolte put them in deep plastic basins, since the Gough mice seem to be strong jumpers and more aggressive. In comparison, says Nolte, “I could work with classical laboratory strains of mice on a level surface and they wouldn’t go anywhere. They wouldn’t even try to escape.”

While they enjoy discussing the potential evolutionary drivers behind some of this observed behavior, what is really exciting to Parmenter and Nolte is what these mice are now telling them at a genetic level.

By crossing mice from Gough and the mainland strain, the Payseur Lab has produced about 1,400 F2 mice. They’ve extracted DNA from each one, sent those samples to a lab for analysis and, in return, received a genomic portrait of each mouse’s DNA. Combing through all of that is a slow process, says Parmenter, but already they are finding hints of the genetic code responsible for their remarkable size.

“Imagine I take the two decks of cards—or ‘chromosomes’—and spread them out, and I can go down each row and say, ‘Oh, there’s a mainland chunk of DNA,’ or ‘Hey, that one came from Gough,’” Nolte says. When you do this enough, patterns begin to appear. “If you take your largest mice and spread their decks, you notice that at the same position on the chromosome they all share the same Gough DNA.” When a big enough percentage of large mice show the same chunk of genes at the same position on the genome, Nolte says, it indicates that, somewhere in the region, there is a gene responsible for size.

That strong association, however, isn’t exactly a smoking gun. When the project began, says Payseur, a prevailing thought was that the rapid evolution in Gough Island mice would be the result of mutations in just a couple of key genes. But in a September 2015 paper in the journal Genetics, the lab published its first genetic mapping results from the F2 crosses, reporting that 19 different sections of the genome appear to play some role in the rapid and extreme size evolution of Gough Island mice. Each of those 19 sections is comprised of anywhere from 400 to 1,400 genes, which means there is much more work to do.

Right now, the process “is not getting at a specific gene,” says Gray, who was the lead author of the Genetics paper. “It’s saying, ‘Okay, this chunk of genome right here somehow corresponds to body size.’ So if you want to tease that apart more, you have to shuffle the deck again. And then shuffle it again.” Keeping your eye on the right card gets difficult. “You really need a lot of samples to get past the noise,” she says, “and that’s a challenge about a project like this. You need a lot of individuals, and that means a lot of money and a lot of time and a lot of mice.”

The Search for a New Island

As the “giant mice” experiment currently stands, the Payseur Lab will, eventually, uncover specific genes that are responsible for the Gough Island mouse’s astounding size, work that could have implications for research on things like human metabolic diseases or even breeding livestock.

“When you look at domesticated animals, size is one of the most important traits because it’s correlated with characteristics like productivity,” Payseur explains. “There’s a lot of interest in CALS in understanding the genetic basis of size variation—in that context it would help select for increased body size and know what genes confer the response. Maybe there’s a more efficient way to ‘build the animal.’”

But if Payseur is to truly unravel the evolutionary mystery of the island rule, he’s going to not only need more time, money and mice—he’s going to need a new island.

The idea is to run the same experiment with another population of large island mice and see if evolutionary patterns emerge. Do some of the same 19 genetic regions his lab has identified show up in those mice, or did they get bigger through a completely different mechanism?

“It would be nice to choose an island because it has similar ecological conditions to Gough that might have driven the same kind of body size increase,” Payseur muses. “But another consideration is, it would be nice to choose an island where the mice have come from a different part of the world. I’m in the throes of figuring that out right now.”

Either way, it’s not a decision that will be made quickly. And the project, which is funded in part by the National Institutes of Health, is slated to run for several more years, meaning that large mice will be calling a UW–Madison lab home for a while.

Gray has already moved on from the project, taking a job as a research scientist at Exact Sciences, a Madisonbased biotech company. Both Nolte and Parmenter realize that they’ll also head elsewhere in their careers before the full story of the Gough Island mice can be translated. But they admit to hoping that they’re still around when the next cardboard box full of large, wild mice arrives in the lab.

“Just knowing that Bret is pursuing a new island population makes us all giddy,” Nolte says.

Payseur shares their excitement, but he knew when he launched the study that he was signing on for what could end up being a career-long project.

“I think that genetics is the most powerful way to answer evolutionary questions,” he says. But getting at answers can be “more complicated than one might imagine,” Payseur admits. “It would be nice to have a simple explanation, but I tend to be attracted to more complicated projects.”

In one respect at least, things might be finally getting a little less complicated for the Payseur Lab: Wherever they turn next for a population of giant mice, the island in question will be a little less remote than Gough. And the mice involved will be a little smaller. And, just maybe, writing the next chapter of this story will be a little bit easier—aided by a key created from the genome of the largest mice on Earth.

 

To Market, to Market

If you’re familiar with the College of Agricultural and Life Sciences (CALS), you no doubt know all about Stephen Babcock and his test that more than 100 years ago revolutionized the dairy industry by providing an inexpensive, easy way to determine the fat content of milk (thus preventing dishonest farmers from watering it down). What you might not know is that his great discovery went unpatented. The only money Babcock received for his invention was $5,000 as part of a Capper Award—given for distinguished service to agriculture—in 1930.

Just years before Babcock received that award, another entrepreneur was hard at work in his lab—and his discovery would break ground not only in science, but also in direct remuneration for the university.

In 1923, Harry Steenbock discovered that irradiating food increased its vitamin D content, thus treating rickets, a disease caused by vitamin D deficiency. After using $300 of his own money to patent his irradiation technique, Steenbock recognized the value of such patents to the university. He became influential in the formation in 1925 of the Wisconsin Alumni Research Foundation (WARF), a technology transfer office that patents UW–Madison innovations and returns the proceeds back to the university.

Discoveries have continued flowing from CALS, and WARF plays a vital role for researchers wanting to patent and license their ideas. But today’s innovators and entrepreneurs have some added help: a new program called Discovery to Product, or D2P for short.

Established in 2013, and co-funded by UW–Madison and WARF, D2P has two main goals: to bring ideas to market through the formation of startup companies, and to serve as an on-campus portal for entrepreneurs looking for help. Together, WARF and D2P form a solid support for researchers looking to move their ideas to market. That was the intent of then-UW provost Paul DeLuca and WARF managing director Carl Gulbrandsen in conceiving of the program.

“The idea of D2P is to make available a set of skills and expertise that was previously unavailable to coach people with entrepreneurial interests,” explains Leigh Cagan, WARF’s chief technology commercialization officer and a D2P board member. “There needed to be a function like that inside the university, and it would be hard for WARF to do that from the outside as a separate entity, which it is.”

D2P gained steam after its initial conception under former UW–Madison chancellor David Ward, and the arrival of Rebecca Blank as chancellor sealed the deal.

“Chancellor Blank, former secretary of the U.S. Department of Commerce, was interested in business and entrepreneurship. D2P really started to move forward when she was hired,” says Mark Cook, a CALS professor of animal sciences. Cook, who holds more than 40 patented technologies, launched the D2P plan and served as interim D2P director and board chair.

With the light green and operational funds from WARF and the University secured, D2P was on its way. But for the program to delve into one of its goals— helping entrepreneurs bring their ideas to market—additional funding was needed.

For that money, Cook and DeLuca put together a proposal for an economic development grant from the University of Wisconsin System. They were awarded $2.4 million, and the Igniter Fund was born. Because the grant was good only for two years, the search for projects to support with the new funds started right away.

By mid-2014, veteran entrepreneur John Biondi was on board as director, project proposals were coming in and D2P was in business. To date, 25 projects have gone through the Igniter program, which provides funding and guidance for projects at what Biondi calls the technical proof of concept stage. Much of the guidance comes from mentors-in-residence, experienced entrepreneurs that walk new innovators down the path to commercialization.

“For Igniter projects, they need to demonstrate that their innovation works, that they’re not just at an early idea stage,” explains Biondi. “Our commitment to those projects is to stay with them from initial engagement until one of three things happen: they become a startup company; they get licensed or we hand them over to WARF for licensing; or we determine this project might not be commercial after all.”

For projects that may not be destined for startup or that need some additional development before going to market, the collaboration between WARF and D2P becomes invaluable. WARF can patent and license discoveries that may not be a good fit for a startup company. They also provide money, called Accelerator funding, for projects that need some more proof of concept. Innovations that may not be ready for Igniter funds, but that are of potential interest to WARF, can apply for these funds to help them move through the earlier stages toward market.

“Some projects receive both Accelerator and Igniter funding,” says Cagan. “Some get funding from one and not the other. But we work together closely and the programs are being administered with a similar set of goals. We’re delighted by anything that helps grow entrepreneurial skills, companies and employment in this area.”

With support and funding from both WARF and D2P, entrepreneurship on campus is flourishing. While the first batch of Igniter funding has been allocated, Biondi is currently working to secure more funds for the future. In the meantime, he and others involved in the program make it clear that the other aspect of D2P—its mission to become a portal and resource for entrepreneurs on campus—is going strong.

“We want to be the go-to place where entrepreneurs come to ask questions on campus, the starting point for their quest down the entrepreneurial path,” says Biondi.

It’s a tall order, but it’s a goal that all those associated with D2P feel strongly about. Brian Fox, professor and chair of biochemistry at CALS and a D2P advisory board member, echoes Biondi’s thoughts.

“D2P was created to fill an important role on campus,” Fox says. “That is to serve as a hub, a knowledge base for all the types of entrepreneurship that might occur on campus and to provide expertise to help people think about moving from the lab to the market. That’s a key value of D2P.”

Over the past two years, D2P, in collaboration with WARF, has served as precisely that for the 25 Igniter projects and numerous other entrepreneurs looking for help, expertise and inspiration on their paths from innovation to market. The stories of these four CALS researchers serve to illustrate the program’s value.

Reducing Antibiotics in Food Animals

Animal sciences professor Mark Cook, in addition to helping establish D2P, has a long record of innovation and entrepreneurship. His latest endeavor, a product that has the potential to do away with antibiotics in animals used for food, could have huge implications for the animal industry. And as he explains it, the entire innovation was unintentional.

“It was kind of a mistake,” he says with a laugh. “We were trying to make an antibody”—a protein used by the immune system to neutralize pathogens—“that would cause gut inflammation in chickens and be a model for Crohn’s disease or inflammatory bowel disease.”

To do this, Cook’s team vaccinated hens so they would produce a particular antibody that could then be sprayed on feed of other chickens. That antibody is supposed to cause inflammation in the chickens that eat the food. The researchers’ model didn’t appear to work. Maybe they had to spark inflammation, give it a little push, they thought. So they infected the birds with a common protozoan disease called coccidia.

“Jordan Sand, who was doing this work, came to me with the results of that experiment and again said, ‘It didn’t work,’” explains Cook. “When I looked at the data, I saw it was just the opposite of what we expected. The antibody had protected the animals against coccidia, the main reason we feed antibiotics to poultry. We knew right away this was big.”

The possibilities of such an innovation—an antibiotic-free method for controlling disease—are huge as consumers demand antibiotic-free food and companies look for ways to accommodate those demands. With that potential in hand, things moved quickly for Cook and Sand. They filed patents through WARF, collaborated with faculty colleagues and conducted experiments to test other animals and determine the best treatment methods. More research was funded through the WARF Accelerator program, and it became clear that this technology could provide the basis for a startup company.

While Cook didn’t receive funds from D2P to bring the product to market, he and Sand used D2P’s consulting services throughout their work—and continue to do so. Between WARF funding and help from D2P, Cook says starting the current company, Ab E Discovery, has been dramatically different from his previous startup experiences.

“D2P is a game changer,” says Cook. “In other cases, there was no structure on campus to help. When you had a technology that wasn’t going to be licensed, you had to figure out where to get the money to start a company. There were no resources available, so you did what you could, through trial and error, and hoped. Now with WARF and D2P working together, there’s both technical de-risking and market de-risking.”

The combination of WARF and D2P has certainly paid off for Cook and Sand. They have a team and a CEO, and are now producing product. Interest in the product is immense, Cook says. He’d like to see the company grow and expand—and stay in Wisconsin.

“It’s been a dream of mine to make Wisconsin a centerpiece in this technology,” Cook says. “I’d like to see the structure strong here in Wisconsin, so that even when it’s taken over, it’ll be a Wisconsin company. That’s my hope.”

Better Corn for Biofuel

Corn is a common sight in Wisconsin and the upper Midwest, but it’s actually more of a tropical species. As the growing regions for corn move farther north, a corn hybrid has to flower and mature more quickly to produce crop within a shorter growing season. That flowering time is determined by the genetics of the corn hybrid.

Conversely, delayed flowering is beneficial for other uses of corn. For example, when flowering is delayed, corn can produce more biomass instead of food, and that biomass can then be used as raw material to make biofuel.

The genetics of different hybrids controls their flowering time and, therefore, how useful they are for given purposes or growing regions. Shawn Kaeppler, a professor of agronomy, is working to better understand those genes and how various hybrids can best fit a desired function. Much of his work is done in collaboration with fellow agronomy professor Natalia de Leon.

“We look across different populations and cross plants to produce progeny with different flowering times,” Kaeppler explains. “Then we use genetic mapping strategies to understand which genes are important for those traits.”

Throughout his work with plant genetics, Kaeppler has taken full advantage of resources for entreprenuers on campus. He has patents filed or pending, and he has also received Accelerator funds through WARF. For his project looking at the genetics behind flowering time, Kaeppler and graduate student Brett Burdo received Igniter funds from D2P as well. The Igniter program has proven invaluable for Kaeppler and Burdo as they try to place their innovation in the best position for success.

“I found the Igniter program very useful, to go through the process of understanding what it takes to get a product to market,” says Kaeppler. “It also includes funding for some of the steps in the research and for some of the time that’s spent. I can’t fund my graduate student off a federal grant to participate in something like this, so the Igniter funding allowed for correct portioning of funding.”

The end goal of Kaeppler’s project is to develop a transgenic plant as a research model and license the technology, not develop a startup company. His team is currently testing transgenic plants to work up a full package of information that interested companies would use to decide if they should license the technology. For Kaeppler, licensing is the best option since they can avoid trying to compete with big agricultural companies, and the technology will still get out to the market where it’s needed to create change.

“In this area of technology transfer, it is important not only to bring resources back to UW but also to participate in meeting the challenges the world is facing with increasing populations,” says Kaeppler. “Programs like D2P and WARF are critical at this point in time to see the potential of these discoveries realized.”

A Diet to Treat Disease

Around the world, about 60,000 people are estimated to have phenylketonuria, or PKU. Those with the inherited disorder are unable to process phenylalanine, a compound found in most foods. Treatment used to consist of a limited diet difficult to stomach. Then, about 13 years ago, nutritional sciences professor Denise Ney was approached to help improve that course of treatment.

Dietitians at UW–Madison’s Waisman Center wanted someone to research use of a protein isolated from cheese whey—called glycomacropeptide, or GMP—as a dietary option for people living with PKU. Ney took on the challenge, and with the help of a multidisciplinary team, a new diet composition for PKU patients was patented and licensed.

“Mine is not a typical story,” says Ney, who also serves as a D2P advisory board member. “Things happened quickly and I can’t tell you why, other than hard work, a good idea and the right group of people. We’ve had help from many people—including our statistician Murray Clayton, a professor of plant pathology and statistics, and the Center for Dairy Research—which helped with development of the foods and with sensory analysis.”

Being at the right place at the right time had a lot to do with her success thus far, Ney notes. “I’m not sure this could have happened many places in the world other than on this campus because we have all the needed components—the Waisman Center for care of patients with PKU, the Wisconsin Center for Dairy Research, the clinical research unit at University of Wisconsin Hospitals and Clinics, and faculty with expertise in nutritional sciences and food science,” she says.

Ney is currently wrapping up a major clinical trial of the food formulations, referred to as GMP medical foods, that she and her team developed. In addition to those efforts, the new diet has also shown surprising promise in two other, seemingly unrelated, areas: weight loss and osteoporosis prevention.

“My hypothesis, which has been borne out with the research, is that GMP will improve bone strength and help prevent fractures, which are complications of PKU,” explains Ney. “I have a comprehensive study where I do analysis of bone structure and biomechanical performance, and I also get information about body fat. I observed that all of the mice that were fed GMP, whether they had PKU or not, had less body fat and the bones were bigger and stronger.” Interestingly, the response was greater in female compared with male mice.

To support further research on this new aspect of the project, Ney received Accelerator funds from WARF for a second patent issued in 2015 titled “Use of GMP to Improve Women’s Health.” Ney and her team, including nutritional sciences professor Eric Yen, are excited about the possibilities of food products made with GMP that may help combat obesity and also promote bone health in women.

“There is a huge market for such products,” says Ney. “We go from a considerably small group of PKU patients who can benefit from this to a huge market of women if this pans out. It’s interesting, because I think I’m kind of an unexpected success, an illustration of the untapped potential we have here on campus.”

Fewer Antibiotics in Ethanol Plants

Bacteria and the antibiotics used to kill them can cause significant problems in everything from food sources to biofuel. In biofuel production plants, bacteria that produce lactic acid compete with the wanted microbes producing ethanol. At low levels, these bacteria decrease ethanol production. At high levels, they can produce so much lactic acid that it stops fermentation and ethanol production altogether.

The most obvious solution for stopping these lactic acid bacteria would be antibiotics. But as in other industries, antibiotics can cause problems. First, they can be expensive for ethanol producers to purchase and add to their workflow. The second issue is even more problematic.

“A by-product of the ethanol industry is feed,” explains James Steele, a professor of food science. “Most of the corn kernel goes toward ethanol and what remains goes to feed. And it’s excellent animal feed.”

But if antibiotics are introduced into the ethanol plant, that animal feed byproduct can’t truly be called antibioticfree. That’s a problem as more and more consumers demand antibiotic-free food sources. But Steele and his colleagues have a solution—a way to block the negative effects of lactic acid bacteria without adding antibiotics.

“We’ve taken the bacteria that produce lactic acid and re-engineered it to produce ethanol,” says Steele. “These new bacteria, then, compete with the lactic acid bacteria and increase ethanol production. Ethanol plants can avoid the use of antibiotics, eliminating that cost and increasing the value of their animal feed by-product.”

The bacteria that Steele and his team have genetically engineered can play an enormous role in reducing antibiotic use. But that benefit of their innovation didn’t immediately become their selling point. Rather, their marketing message was developed through help from D2P and the Igniter program.

“Learning through D2P completely changed how we position our product and how we interact with the industry,” says Steele. And through that work with D2P, Steele plans to later this year incorporate a company called Lactic Solutions. “D2P has helped us with the finance, the organization, the science, everything. Every aspect of starting a business has been dealt with.”

Steele and his collaborators are now working to refine their innovation and ideas for commercialization using Accelerator funds from WARF. Steele’s work, supported by both WARF and D2P, is a perfect example of how the entities are working together to successfully bring lab work to the market.

“There is no doubt in my mind that we would not be where we are today without D2P,” says Steele. “On top of that you add WARF, and the two together is what really makes it so special. There’s nothing else like it at other campuses.”

With such a strong partnership campaigning for and supporting entrepreneurship at UW–Madison, CALS’ strong history of innovation is poised to endure far into the future, continuing to bring innovations from campus to the world. And that is the embodiment of the Wisconsin Idea.

 

Going for the Gut

How do we keep food animals healthy when bacteria and other pathogens are so good at outsmarting drugs intended to work against them?

In an innovation that holds great promise, CALS animal sciences professor Mark Cook and scientist Jordan Sand have developed an antibiotic-free method to protect animals raised for food against common infections.

The innovation comes as growing public concern about antibiotic resistance has induced McDonald’s, Tyson Foods and other industry giants to announce major cuts in antibiotic use in meat production. About 80 percent of antibiotics in the United States are used by farmers because they both protect against disease and accelerate weight gain in many farm animals.

The overuse of antibiotics in agriculture and human medicine has created a public health crisis of drug-resistant infections, such as multidrug-resistant Staphylococcus aureus (MRSA) and “flesh-eating bacteria.”

“You really can’t control the bugs forever; they will always evolve a way to defeat your drugs,” says Cook.

Cook and Sand’s current work focuses on a fundamental immune “off-switch” called Interleukin 10 or IL-10, manipulated by bacteria and many other pathogens to defeat the immune system during infection. He and Sand have learned to disable this off-switch inside the intestine, the site of major farm animal infections such as the diarrheal disease coccidiosis.

“People have manipulated the immune system for decades, but we are doing it in the lumen of the gastrointestinal system. Nobody has done that before,” Cook says.
Cook vaccinates laying hens to create antibodies to IL-10. The hens transfer the antibody to their eggs, which are then blended, pasteurized and sprayed on the feed of the animals he wants to protect. The antibody neutralizes the IL-10 off-switch in those animals, allowing their immune systems to better fight disease.

In experiments with more than 300,000 chickens, those that ate the antibody-bearing material were fully protected against coccidiosis and other gastrointestinal diseases that commonly affect poultry.

Smaller tests with larger animals also show promise. In one example, animal sciences professor Dan Schaefer and his graduate research assistant, Mitch Schaefer, halved the rate of bovine respiratory disease in beef steers by feeding them the IL-10 antibody for 14 days.

Cook and Sand, who have been working on the IL-10 system since 2011, are forming Ab E Discovery LLC to commercialize their research. One of the four patents they have filed through the Wisconsin Alumni Research Foundation has just been granted, and WARF has awarded a $100,000 Accelerator Program grant to the inventors to pursue the antibiotic-replacement technology. The Discovery to Product partnership between UW and WARF played a key role in helping Cook and Sand prepare it for commercialization.

Cook has already turned his research and some 40 patented technologies into start-up companies including Aova Technologies, which improves animal growth and feed efficiency, and Isomark LLC, which is developing a technology for early detection of infection in human breath.

PHOTO: Eggs from these hens contained antibodies that were used to test the antibiotic replacement. (Photo courtesy of Mark Staudt, WARF)

The MBA of Dairy

The average age of a Wisconsin farmer is over 56 and rising, and the state has been losing around 500 dairy farms per year. It’s no surprise, then, that experts say it’s critical to prepare young people to step into farm roles in order to keep the state’s $88 billion agricultural economy strong into the future.

But making the transition into dairy farming is complicated, and aspiring farmers often don’t have the capital or the experience to take over an established operation.

Enter the Dairy Grazing Apprenticeship (DGA) program, which is working to address the issue by providing support for young people interested in becoming dairy farmers. Started in 2010, the first-of-its-kind program is administered by the Wisconsin-based nonprofit GrassWorks, Inc., with CALS as a key partner.

Earlier this year, DGA received $750,000 from the U.S. Department of Agriculture’s Beginning Farmer and Rancher Development Program. The funding will enable organizers to improve and expand the program in Wisconsin, as well as explore the possibility of rolling it out to other dairy states.

“It’s a meat-and-potatoes program that really takes people up to the level where they can own and operate their own dairy,” says DGA director Joe Tomandl. “It’s the MBA of dairy.”

Program participants complete 4,000 hours of paid training over two years, most of it alongside experienced dairy farmers, and work their way up from apprentices to Journey Dairy Graziers and Master Dairy Graziers. Although most of that time is spent in on-the-job training, there’s also a significant requirement for related instruction. That’s where CALS comes in.

As part of the program, apprentices attend a seminar about pasture-based dairy and livestock through the Wisconsin School for Beginning Dairy and Livestock Farmers (WSBDF), which is co-sponsored by the CALS-based Center for Integrated Agricultural Systems and the Farm and Industry Short Course. The seminar involves a 32-hour commitment, which is generally fulfilled through distance education and includes instruction from CALS professors from dairy, animal and soil sciences.

“We believe in the Wisconsin Idea and want to make sure our classes are accessible to people who want more education, but preferably close to where they live and work,” says Nadia Alber, a WSBDF outreach coordinator who helps organize the seminar and also serves on the DGA board.

In 2009, GrassWorks, Inc. turned to WSBDF director Dick Cates PhD’83 for guidance and access to a well-respected educational curriculum to help get the DGA up and running—and the WSBDF team has been involved ever since.

“We were just this little nonprofit with a very small budget trying to compete for a big federal grant,” says Tomandl. “For us, it was important to have UW–Madison as a strategic partner.”

As part of the most recent round of funding, DGA’s partners at CALS will lead an effort to quantify the program’s broader impacts.
“They have already proven that participants are moving along to their own farms after the apprenticeship, so they have an established track record,” says Alber. “This new study will look at some of the program’s other impacts, including economic, environmental and social.”

Give: Honoring Our Teachers

Robert R. Spitzer BS’44 MS’45 PhD’47 has held such positions as president and CEO of the agribusiness firm Murphy Products, president of the Milwaukee School of Engineering and head of the U.S. State Department’s Food for Peace program.

But as the son of hardworking tenant farmers in rural Wisconsin, he understands the value of financial support. When Spitzer went off to study at UW-Madison in 1940 he received a $100 scholarship from Sears, Roebuck & Co.

“That $100 was a big number back when tuition was very modest,” says Spitzer. “I felt from day one that I owed a lot of people.”

During his time at CALS, where he eventually earned a bachelor’s degree in agriculture and master’s and Ph.D. degrees in biochemisty and animal nutrition, Spitzer learned from some of the college’s most illustrious figures. “I worked in a lab next to Harry Steenbock,” he says. “Conrad Elvehjem was one of my teachers.” Other early influences included E.B. Hart, Henry Ahlgren and Mike Foster.

“All these men happened to be not only good scientists but people of breadth and vision,” recalls Spitzer. “The teaching was not only about dairy chemistry or organic chemistry—it was teaching about culture, and about obligation and opportunity.”

The importance of good teaching stayed with him. “When I got out in industry I saw research recognized and I got the feeling that the teaching end of things needed more light on it,” he says. “And so in 1968 we established an outstanding teacher award at my company.”

When the company was sold, Spitzer stepped up to personally ensure that the award continued by establishing a fund at the UW Foundation and designating a portion of his estate to benefit future generations. The Spitzer Excellence in Teaching Award each year provides recognition and $1,000 to a worthy CALS educator.

“It’s motivational,” says this year’s winner Ronald L. Russell, a senior lecturer in animal sciences. “It drives me to want to do an even better job on the teaching front.”

Spitzer continues to serve in various civic organizations and on corporate boards—for example, he’s a director and senior mentor with Kikkoman Foods, Inc.—and, with his wife, Delores, advocate for the things he cares about.

Ensuring an adequate food supply for all—the subject of his book, No Need for Hunger—is one of his most abiding passions.

“To me the true avenue to peace in the world is agriculture training and agricultural independence so that people have enough to eat—and the pride that goes with that kind of life,” he says.

For information about establishing funds,
designating a portion of your estate or making a gift to CALS now, please contact Sara Anderson at the UW Foundation, tel. (608) 263-9537, e-mail Sara.Anderson@supportuw.org.

Class Act: A Vet-to-Be

James Downey was thigh-high to a Percheron when he got his first look at veterinary medicine. As he watched the local vet treat his grandparents’ draft horses, the seed for a career in animal health was planted.

He already was tuned in to the idea of a medical career because both his parents were nurses. “They do health care for people; I love animals. I saw this as a way to tie the two together,” says Downey, who grew up in Manitowoc County near Valders.

By high school he was earning money raising grass-fed beef and litters of pigs and helping out on nearby dairy operations. And he’d begun shadowing a vet—the same one who treated his own stock and his grandparents’ horses.

By the end of his freshman year at CALS, Downey was on the fast track. He’d been accepted to the highly selective Food Animal Veterinary Medicine Scholars program (FAVeMedS), which was created to address concerns about a shortage of agricultural veterinarians. Undergraduates in FAVeMedS are guaranteed a spot in the UW School of Veterinary Medicine (SVM) after completing their junior year.

As a designated vet-to-be at CALS, Downey pursued hands-on training in the labs of CALS animal sciences professor Mark Cook and SVM professor Dr. Gary Etzel. And he honed his people skills by serving as a peer mentor in the Bradley Learning Community (a housing program that helps freshmen transition to college life), as a house fellow in the Farm and Industry Short Course dorms, and as a leader in groups like Saddle and Sirloin and Collegiate FFA.

The business he’s going into is changing fast, Downey says. “Vets are spending more of their time in a consulting role. Our job isn’t just to treat animal disease. We look at the entire farm to see what we can do to prevent infections and outbreaks. As a vet in the future, it will be important to have broad knowledge for looking at the whole farm.”

Getting that broad knowledge will likely take him far from home—he plans to work on swine, beef and dairy operations outside of Wisconsin in his fourth year of vet school, his “extern” year, to see different practices—but he hopes that’s temporary. “I’d love to end up back in Valders,” Downey says. “I love where I’m from. I want to learn as much as I can, to be well-rounded, so that when I move back I can help everybody.”

Targeting a Killer

By the time doctors diagnose septic shock, patients often are on a knife’s edge. At that point, for every hour that treatment is delayed, a person’s risk of death rises an alarming six percent.

Time is of the essence. And CALS animal sciences professor Mark Cook was part of a team that developed a breath biomarker technology capable of detecting septic shock 12 to 48 hours earlier than standard methods. This powerful device, which was patented in 2008 and is making its way through clinical trials, creates an exciting opportunity for new, life-saving medical interventions.

“If you can detect septic shock earlier, then you can begin to explore ways of treating it earlier,” says Cook, who already is in the process of developing a promising antibody-based treatment.

Septic shock—or severe sepsis—affects approximately 750,000 people in the United States each year, taking more than 200,000 lives and costing around $17 billion in treatment.

It occurs when a person’s immune system, spurred by a bacterial infection or serious physical trauma, launches a massive inflammatory response that can lead to a drop in blood pressure, multiple organ failure and death.

The gastrointestinal tract is believed to be the primary site of this runaway response. Because of that, some scientists call the gut “the motor for sepsis,” says Cook. So it’s no surprise that Cook looked to the gut for a solution.

With funding from a Robert Draper Technology Innovation Fund grant from the UW–Madison Graduate School, he began working to interfere with the activity of a protein called sPLA2, which is part of the chain of events in the gut that drives septic shock. It is a dual-purpose protein that can act as both an enzyme and a signaling molecule, so it wasn’t initially clear which of the protein’s roles—enzyme, signaling or both—were involved.

Cook and Jordan Sand, a scientist in Cook’s lab, decided to first try blocking the gut protein’s ability to signal, guessing that this would calm the immune response. So Sand made a series of antibodies that inhibited sPLA2’s signaling function—but not its enzyme function—and then tested them in a mouse model of septic shock.

“We actually made it much worse,” says Sand. “We absolutely failed. There’s no other way to say it.”

Sand went back and made antibodies that blocked only the protein’s enzyme function. Those worked. “We had 100 percent survival across the board,” says Sand.

If the antibody approach also works in people, this treatment could help patients with septic shock stay alive while they wait for antibiotics and other standard treatments to kick in.

Cook and Sand have filed a patent on the technology. But, Cook notes, “There are still a lot of steps to get this into human medicine.”

Gut Feeling

Students at a Chicago public high school got some hands-on—and hands-in—experience with two cannulated cows that CALS dairy science management instructor Ted Halbach and dairy science PhD student Shane Fredin brought down to the Windy City.

Although the Chicago High School for Agricultural
Sciences (CHSAS) is a magnet school for ag and life sciences, its urban location limits student opportunities to get up close and personal with farm animals. The cows were part of a workshop teaching students how feed is digested in the four compartments of a dairy cow’s stomach.

“The students were stunned that they got to put their arm in a cow,” notes CHSAS instructor Maggie Kendall. “After the first brave soul, they all lined up with gloves, eager to follow suit. They were enthralled and it was organized in a way that kept their attention. They had just enough time at each station to absorb the material and ask questions.”

CALS regularly recruits students from CHSAS, sparking interest and cultivating relationships through such activities as workshops and frequent visits by Tom Browne, CALS assistant dean for minority affairs. Currently five students from CHSAS are undergrads at CALS.

Getting to the heart of a problem

When Marion Greaser set out to study titin, the largest natural protein known to man, his goal was to answer some basic questions about its role in the body. A major protein of skeletal muscle that’s also found in heart tissue, titin gives muscle its elasticity and is known for its massive size, which ranges from around 27,000 to 33,000 amino acid residues in length.

“Initially we were just going to look at whether titin was related to muscle growth in animals,” says Greaser, a CALS professor of animal sciences.

Working in rats, his team looked at changes in the size of the titin protein over the course of animal development—and immediately came across something strange. In most cases the titin protein shifted from a larger form to a smaller form during development due to natural changes in protein processing known as alternative splicing. But in some rats the titin didn’t change. It stayed big.

The team wondered if they’d mixed up the samples. “But we’d kept good track of things and, in fact, all of the weird samples were from the same litter of rats,” says Greaser. “Then the light bulb went off: There must be some genetic reason why these samples are different. These rats had a genetic mutation affecting the alternative splicing of the titin.”

But where was the mutation? They first checked the titin gene itself, but it was fine. With hard work, they were able to pinpoint the mutation to a little-studied gene called RBM20, which had been previously linked to dilated cardiomyopathy and sudden death in humans.

Dilated cardiomyopathy affects approximately one in 2,500 people. Sufferers have enlarged hearts, with thin walls, that don’t pump blood very well. People with the RBM20 mutation need heart transplants and, without them, tend to die quite early: between ages 25 and 30.

Scientists first linked RBM20 to hereditary dilated cardiomyopathy in 2009, but they hadn’t yet figured out how a faulty RBM20 gene worked—or didn’t work—to cause disease inside the body.

Greaser’s accidental discovery, as described in Nature Medicine, filled in the blank. In healthy individuals, the RBM20 protein is involved in the alternative splicing that helps trim titin down to its smaller, adult form. Without it, titin doesn’t get processed correctly, and the presence of extra-large titin in heart tissue leads to disease.

“Now doctors can analyze people showing symptoms of dilated cardiomyopathy, see if they’re carrying this mutation and factor this information into their treatments,” says Greaser. That treatment would probably start with careful monitoring to catch any further deterioration of the heart condition, Greaser notes.

Meats Made in Wisconsin

Geiss Meat Service in Merrill, Wisconsin, has been butchering livestock for farmers in Lincoln County and surrounding areas since 1956, cutting about 6,000 pounds of beef a day—that’s an average of eight to 10 beef cattle—into fresh steaks, chops, loins and roasts. But when third-generation owner Andrew Geiss took over the company in 2005, he was ready to try something new.

“I wanted to figure out a way to build up a retail business by expanding our sausage line,” he says. “I thought there was more money to be made by diversifying our products.” He added a smokehouse and started taking basic meat science classes at CALS—and soon discovered a satisfaction in crafting his own specialty meats that meat cutting alone couldn’t provide.

“There’s a lot of pride and art that goes into it. For instance, getting that perfectly round shape and uniformity in color when making a ham,” says Geiss. “You can’t imagine how much one thing in the smokehouse—for example, the humidity levels—changes everything, and how much work is involved.”

But the business side wasn’t going as well as he had hoped. “Honestly, I was at a point where we needed to make some serious changes with the consistency of our products in order to please customers and expand sales,” he says.

He found exactly the help he needed in 2010, when he was accepted into the inaugural class of the Master Meat Crafter training program at CALS. He and his classmates—16 men and one woman from small meat operations all around the state—traveled to Madison regularly over the course of two years for rigorous, hands-on instruction in meat science and processing, covering such areas as fresh meats, fermented and cured meats, cooked and emulsified sausage and meat microbiology and food safety.

That training earned Geiss the right to use the formal designation of Master Meat Crafter. But even more than the title, the program gave him the skills he needed to improve the quality, yields and markup on his products. “Now we’re doing a ton of different kinds of sausages, and everything is turning out just perfectly,” he reports. “And I don’t have to second-guess anything. I know that everything is exactly the way that I want it to be, and it turns out the same every time.”

The industry already has taken note of his improvements. Last summer Geiss Meat Service entered products for the first time in the American Cured Meat Championships and won awards in four categories, including first place in cooked ring bologna.

But even seasoned meat crafters see the value of the master course. The debut class included Louis E. Muench, a third-generation sausage maker who was inducted into the Wisconsin Meat Industry Hall of Fame in 2009. Since 1970, Louie’s Finer Meats in Cumberland has been crafting ham, bacon, bologna, breakfast links, salami, summer sausage and dozens of other products—and winning more than 300 state, national and international awards for their quality. Its creative staff also designs an extraordinary assortment of bratwurst, including applewurst, bacon cheeseburger, blueberry, pumpkin pie and wild rice and mushroom.

Why would someone with that level of expertise be interested in going back to school? “There’s so much technology that changes every day,” Muench says. As examples he cites new antimicrobials developed to combat foodborne pathogens and new government food safety, labeling and operations-related regulations, including changes that will for the first time allow Wisconsin’s state-inspected small processors to sell across state borders. “For our business to succeed in the long run, we need to keep current on everything and try to pass on as much knowledge as we can to keep the quality and the food safety up,” says Muench.

Within a year of completing the program, Muench had encouraged his son Louis and his brother William to sign up with the next group of students.

That’s the kind of success that the Master Meat Crafter program’s key partners—CALS, UW-Extension, the state Department of Agriculture, Trade and Consumer Protection (DATCP) and the Wisconsin Association of Meat Processors (WAMP)—envisioned when they determined that state-of-the-art training was needed to take the state’s specialty meat production to an even higher level.

Program director Jeff Sindelar, a CALS professor of animal sciences and UW-Extension meat specialist, designed it to be like an academic postgraduate program that would benefit even the most skilled and experienced artisans. In both structure and intent, the new program mirrors the Wisconsin Master Cheesemaker program run by the Center for Dairy Research at CALS, which was a key player in turning Wisconsin’s specialty cheese business into a globally acclaimed leader that today accounts for more than 20 percent of Wisconsin’s total cheese production, up from a mere 4 percent in the 1990s.

The Master Meat Crafter program’s success will be measured over the long haul, says Sindelar: “It’s which of these plants will grow, add on, which plants are going to pass along the business, whether to family members or to other people who can continue the name. It’s really about longevity and viability of the industry.

Stopping Salmonella

As a veterinarian in Sudan, his home country, Amin Fadl worked with large poultry producers in the Khartoum area to optimize the health and growth of their flocks. In 1993, he moved to the United States to attend the University of Connecticut, where he earned his master’s and doctoral degrees in microbiology. Now an assistant professor of animal sciences at CALS, Fadl brings his various experiences to bear in the classroom, where he teaches “Animal Science 320: Animal Health and Disease Management,” and in the lab, where he is developing a poultry vaccine against salmonella.

Let’s start with salmonella. What is it and how does it get in our food supply?

Salmonella is one of the major foodborne pathogens. It’s a zoonotic pathogen, which means it can be passed between humans and animals. Humans mostly get infected by eating contaminated meat from infected animals. Unfortunately, a significant number of chickens in our nation’s poultry operations are carriers of this pathogen. They have it in their intestines but don’t show any symptoms or signs of sickness. So during meat processing, salmonella from the intestines can sometimes contaminate the carcass, the meat. As for eggs, salmonella either can be on the outside, on the eggshell, or inside, in the yolk. A significant proportion of eggs are contaminated, so that’s why people always recommend that eggs be cooked properly before eating.

How big of a problem is this?

It’s big. According to the Centers for Disease Control and Prevention, there are about two million cases of salmonella infection in humans every year, but many people just have minor abdominal cramps so they don’t go to the hospital. About 43,000 people actually go to the hospital and provide samples that confirm salmonella infection.

And it can be a big problem for poultry producers, too. Consider last summer’s salmonella outbreak that was linked back to an Iowa egg-producing farm. Many millions of eggs had to be recalled, so that was a huge economic loss. And not only that, but production on this farm was basically stopped for a significant period of time—months—until regulators made sure that they had cleaned everything, sanitized everything and figured out the source of the contamination.

Overall, salmonella is believed to have a total economic cost of more than $1 billion dollars per year.

How would an animal vaccine help?

The whole issue here is how we are going to reduce salmonella outbreaks in humans. Our approach is to stop the infection at the source. Before chickens are harvested, we want to make sure that they are free of salmonella. One way to do this is by administering a vaccine that inhibits the colonization of salmonella in the intestinal tract. This breaks the chain of infection at the source.

How does your vaccine work?

Our vaccine is a weakened form of the pathogen. It’s called a live attenuated vaccine. To make it, we deleted a gene from the salmonella genome known as gidA, which controls the production of a suite of disease factors and co-factors. You can immunize mice with our mutant strain, and then challenge the animals later with a lethal dose of regular salmonella and nothing happens. They stay healthy.

Now we need to test it in chickens to make sure that this vaccine is indeed capable of blocking or reducing the colonization of salmonella in the intestinal tract of these animals. If it does, we can look to take it to the next level.