Breeding for Flavor

On a sticky weekday morning in August, a new restaurant called Estrellón (“big star” in Spanish) is humming with advanced prep and wine deliveries. All wood and tile and Mediterranean white behind a glass exterior, the Spanish-style eatery is the fourth venture of Madison culinary star Tory Miller. Opening is just three days away, and everything is crisp and shiny and poised.

But in the dining room, the culinary focus is already years beyond this marquee event. This morning is largely about creating the perfect tomato. Graduate students from UW–Madison working on a new program called the Seed to Kitchen Collaborative have set the table with large sheets of white paper and pens. At each place setting are a dozen small plastic cups of tomatoes, diced as if for a taco bar. Each container is coded.

Chef Miller takes a seat with colleagues Jonny Hunter of the Underground Food Collective and Dan Bonanno of A Pig in a Fur Coat. The chefs are here to lend their highend taste buds to science, and they start to banter about tomato flavor. What are the key elements? How important are they relative to each other?

Despite their intense culinary dedication, these men rarely just sit down and eat tomatoes with a critical frame of mind. “I learned a lot about taste through this project,” says Hunter. “I really started thinking about how I defined flavor in my own head and how I experience it.”

This particular tasting was held last summer. And there have been many others like it over the past few years with Miller, Hunter, Bonanno and Eric Benedict BS’04, of Café Hollander.

The sessions are organized by Julie Dawson, a CALS/UW–Extension professor of horticulture who heads the Seed to Kitchen Collaborative (formerly called the Chef–Farmer–Plant Breeder Collaborative). Her plant breeding team from CALS will note the flavors and characteristics most valuable to the chefs. Triangulating this with feedback from select farmers, plant breeders will get one step closer to the perfect tomato. But not just any tomato: One bred for Upper Midwest organic growing conditions, with flavor vetted by some of our most discerning palates.

“We wanted to finally find a good red, round slicer, and tomatoes that look and taste like heirlooms but aren’t as finicky to grow,” says Dawson at the August tasting, referring to the tomato of her dreams. “We’re still not at the point where we have, for this environment, really exceptional flavor and optimal production characteristics.”

Nationwide, the tomato has played a symbolic role in a widespread reevaluation of our food system. The pale, hard supermarket tomatoes of January have been exhibit A in discussions about low-wage labor and food miles. Seasonally grown heirloom tomatoes have helped us understand how good food can be with a little attention to detail.

But that’s just the tip of the market basket, because Dawson’s project seeks to strengthen a middle ground—an Upper Midwest ground, actually—in the food system. With chefs, farmers and breeders working together, your organic vegetables should get tastier, hardier, more abundant and more local where these collaborations exist.

Julie Dawson decided she wanted to be a farmer at age 8. By her senior year in high school she was hooked on plant breeding and working in the Cornell University lab of Molly Jahn—now a professor of agronomy at CALS—on a project developing heat tolerance in beans. Dawson stayed at Cornell for college and continued to work for Jahn and Margaret Smith, a corn breeder who was working with the Iroquois to resurrect traditional breeds. By the time she finished college, Dawson had a strong background in both plant breeding and participatory research. During her graduate education at Washington State University she began breeding wheat for organic systems. As a postdoc in France, she started working on participatory breeding with bakers and farmers, focusing on organic and artisanal grains.

In September of 2013, barely unpacked in Madison, Dawson found herself traveling with CALS horticulture professor and department chair Irwin Goldman PhD’91 to a conference at the Stone Barns Center for Food & Agriculture north of New York City.

Organized by food impresario Dan Barber, author of The Third Plate: Field Notes on the Future of Food, the conference gathered chefs and breeders from across the country to talk about flavor. Barber knew what could happen when chefs and breeders talked because he was already working with Dawson’s graduate advisor at Washington State, wheat breeder Stephen S. Jones.

In the 1950s, as grocery stores replaced corner markets and California’s Central Valley replaced truck gardens, the vegetable market began to value sizes and shapes that were more easily processed and packed. That a tomato could be picked early in Florida and ripen during the boxcar ride to Illinois was more important than how it tasted. Pesticides and fertilizers also became more common, buffering differences between farms and providing a more uniform environment. Packing houses and national wholesalers dominated the market, and vegetable breeding followed.

Breeders have at their disposal a huge variety of natural traits—things like color, sugar content and hardiness. Over the course of decades they can enhance or inhibit these traits. But the more traits they try to control, the more complex the breeding. And flavor has been neglected over the last few decades in favor of traits that benefit what has become our conventional food system. “Breeders were targeting a different kind of agricultural system,” explains Dawson.

Barber wanted to reverse that trend, to connect farmers and plant breeders and chefs. It appealed to Dawson’s sense of where food should be going. “Breeding for standard shapes and sizes and shipping ability doesn’t mean that breeders aren’t interested in flavor,” she says. “It just means that the market doesn’t make it a priority.”

New to Madison, Dawson hadn’t met Tory Miller, but they connected at the Stone Barns Center, and together realized Madison was the perfect place to pursue this focus on flavor: A strong local food movement supporting a dynamic and growing number of farms, world-class chefs, and—through CALS’ Plant Breeding and Plant Genetics Program—one of the highest concentrations of public plant breeders in the world.

They decided to get started in the summer of 2014 by growing a collective palette of many varieties of the most common vegetables. Dawson approached the breeders, Miller rallied the chefs, and both reached out to their network of farmers. “The main idea of the project is to get more informal collaboration between farmers and plant breeders and chefs—to get the conversation started,” says Dawson. “We can really focus on flavor.”

When the chefs are done tasting tomatoes, they wander over to a table of corn and cucumber. They are magnetized by the different kinds of corn: an Iroquois variety, another type that is curiously blue, and large kernels of a corn called choclo, which is very popular in the Andes.

These are just a few jewels from the collection amassed over four decades by CALS corn breeder Bill Tracy, who works in both conventional and organic sweet corn. Tracy leads the world’s largest research program focused on the breeding and genetics of organic sweet corn, with five organically focused cultivars currently on the market. He was recently named the nation’s first endowed chair for organic plant breeding, with a $1 million endowment from Organic Valley and Clif Bar & Company and a matching $1 million gift from UW alumni John and Tashia Morgridge.

The support gives Tracy more room to get creative, and Dawson is helping to develop potential new markets for his breeds. Despite his focus on sweet corn, Tracy has always suspected there might be interest in corn with more flavor and less sugar. “We know from sweet corn that there are all sorts of flavors and tendencies,” Tracy says. From soups to the traditional meat and potato meal, he thinks savory corn deserves a place.

And building from deep Mexican and South American traditions of elotes and choclo corns, Tracy sees vast potential for new varieties. “Corn is one of the most variable species,” he says. “For every trait that we work with in corn there is an incredible range of variation.”

The chefs went crazy last year when Tracy introduced them to some of the Andean varieties. “Amazing,” says Bonanno of A Pig in a Fur Coat. “I want to make a dish like a risotto or a pasta dish or some type of salad. I don’t want the sweet on sweet on sweet. I just want the corn flavor. I want savory.”

Tracy’s modest sampler inspired chefs Hunter and Miller as well, and they started brainstorming potential growers for 2016. If the experiment takes off, the corn could start infiltrating Wisconsin restaurants this summer.

With so much genetic potential, the chefs help focus the breeding process. “Breeding is a craft,” Tracy says. “The great chefs—and we have some great ones in Madison—are truly artists. They are fine artists at the same level as a fine arts painter or musician. The creativity is just mind-boggling.”

And there is little question that they understand flavor. “They are able to articulate things that we can’t. We might be able to taste the differences, but we can’t say why they are different or why one is better than the other. The chefs are able to do that,” says Dawson. “And that’s useful for the whole food system.”

A food system has so many pieces— chefs, farmers, retailers, processors, consumers—but perhaps the most fundamental unit is the seed. After decades of consolidation in the seed industry and a significant decline in public breeding programs at land grant universities, many sectors of the food movement are turning their attention to seed.

One fortunate consequence of the industry concentration has been to create a market opening for smaller regional and organic seed companies. They, along with a few public breeders, still serve gardeners and market farmers. One goal of the Seed to Kitchen Collaborative is to systematically support breeding for traits that are important for local food systems.

These small companies develop their own breeds, but also adopt interesting varieties from public breeding programs. They have the capacity to target regional seed needs, and are usually okay with seed saving. “It’s almost like working with nonprofits because they are really interested in working with the community,” says Dawson.

After Adrienne Shelton MS’12 completed her PhD in 2014—she studied sweet corn breeding under Bill Tracy— she moved to Vitalis Organic Seeds, where she works with growers to find cultivars best suited for the Northeast. As a graduate student in CALS’ Plant Breeding and Plant Genetics program, Shelton was a leader in establishing the Student Organic Seed Symposium, an annual national gathering to offer information and support to young researchers focusing on breeding organic varieties.

“Getting farmers’ feedback is critical,” says Shelton of the opportunity to work with the Seed to Kitchen Collaborative. “The more locations, the better, especially in organic systems where there is more variation.”

The organic movement deserves a lot of credit for the trajectory of new food movements. “Organic growers often have a higher bar for the eating quality of produce because that’s what their customers are demanding,” Shelton says. “Putting a spotlight not just on the farmers but all the way back to the breeding is helping the eater to recognize that all these pieces have to be in place for you to get this delicious tomato that you’re putting on your summer salad.”

These kinds of seed companies will also help make local and regional food systems more resilient to climate change. “It’s fairly easy to breed for gradual climate change if you are selecting in the target environment, because things change over time,” says Dawson. “The most important thing is to have regional testing and regional selection.”

Overall, a more vigorous relationship between breeders and farmers promises a larger potential for varieties going forward, Dawson notes. The ultimate goal is to make plant breeding more of a community effort. When chefs and farmers and consumers participate in the selection process, says Dawson, “The varieties that are developed are going to be more relevant for them.”

Amy Wallner BS’10, a CALS graduate in horticulture and soil sciences, has worked behind both the knife and the tiller. While farming full-time, she spent six months working nights at a Milwaukee farm-to-table restaurant called c. 1880. Now she’s the proprietor of Amy’s Acre—actually, an acre and a half this year—on the margins of a commercial composting operation in Caledonia, Wisc., south of Milwaukee.

She sells to a co-op and a North Side farmers market, but her restaurant clients—c. 1880, Morel and Braise RSA (also part of the Seed to Kitchen Collaborative)—are integral to her business. Before she orders seed for the next growing season, she’ll drop off her catalogs for the chefs to study, returning later for in-depth conversation. “Chefs who want to buy local foods want to have a greater understanding of the whole process,” Wallner says. “I just like to sit down and talk about produce with somebody who uses it just as much as I do.”

Knowing the ingredients they covet, and what kinds of flavors intrigue them, helps Wallner narrow her crop list. Joining the Seed to Kitchen Collaborative took it further. As a student Wallner had worked in the trial gardens at the West Madison Agricultural Research Station, and now she can truly appreciate the farm value of that research. “I wanted to stay connected to UW,” she says.

This will be Wallner’s third season as part of the group’s trials. In her excitement, the first year she grew more than she could handle. Last year she trialed beets, carrots and tomatoes alongside radicchio and endives. “I took on a smaller number of crops because I wanted to be able to collect more extensive observations,” she says.

Wallner hopes getting the breeders involved may lead to strengthening the hardiness of early- and late-season crops. “In the Upper Midwest, that’s when you’re doing the most gambling with your crops. If we can continue to find things that can push those limits out a little bit …”

Eric Elderbrock, of Elderberry Hill Farm near Madison, has similar practical concerns: With the region’s incredibly variable climate, he’s always looking for something that isn’t going to require the most perfect growing conditions and is also resistant to disease and insects: “For it to be a realistic thing for me to be able to grow, it has to meet these demands.”

When he was growing up, Elderbrock didn’t pay much attention to where his food came from. It wasn’t until he spent a college semester in Madagascar that he began to realize the relationship between the food and the land around him. For him, the collaboration is a form of continuing education.

“It’s helpful to me as a farmer to have a sense of what’s possible as far as the breeding side,” says Elderbrock. “I love seeing all of the different colors and flavors and textures. It helps keep farming interesting.”

As picturesque as these relationships are, the business has to work. High-end cuisine doesn’t reflect most daily eating, but these chefs are very committed to helping Wisconsin farmers stay in business and make a good living.

“The chefs always seem to be a couple of years ahead,” Elderbrock notes. This year he is continuing to experiment with artichokes, a crop typically associated with dry Mediterranean climates like Spain and California. Chef Dan Bonanno is encouraging the research in part because of his Italian heritage and culinary training, which included a year in Italy. He would be thrilled to find Wisconsin variations on some traditional Italian ingredients like the artichoke.

And sourcing locally also leads to a robust cuisine. “Italy has 20 regions and each region has its own cuisine because they source locally,” notes Bonanno.

This past February, a few weeks before growers would start their seedlings, the Seed to Kitchen Collaborative gathered to tweak plans for this year’s trials.

At L’Etoile, Chef Tory Miller’s flagship establishment in Madison, beautiful prints of vegetables adorn the wall. But the tables that day were rearranged in a horseshoe. The distinctive conference seating suppresses the normally refined air. Only the curvature of the bar and its adjacent great wall of bourbon suggested a more sensual approach to food.

After introductions and a quick review of last year’s progress, Dawson opens the floor to feedback. The ensuing conversation distills into savory glimpses of market baskets and menu flourishes to come.

They’ve been talking about running a trial for tomato “terroir”—drawing from the wine enthusiasts’ notion that differences in soil can have subtle and profound impacts on flavor. Dawson is a little concerned about logistics, but Miller is persistent: “I think it would be a mistake to not include terroir.”

They discuss what they can do for unsung vegetables like rutabaga and parsnip—produce particularly suited for the Wisconsin climate, but generally unloved. They learn about a new trial focusing on geosmin, which produces the earthy flavor of beets. The chefs wonder aloud if it’s possible to preserve the beautiful purple hues of some heirlooms. Dawson regrets to inform them that changing the physical chemistry involved—the pigments are water soluble, and flush easily from the plants—is a little beyond their powers.

They talk about what makes perfect pepper for kitchen processing. Is seedless possible? Dawson smiles wryly and reminds them of the intrinsic challenge of a seedless pepper.

The conversation gets very detailed over potatoes. Researcher Ruth Genger from the UW’s Organic Potato Project has about 40 heirloom varieties of potato from the Seed Savers Exchange that will be grown out over the next few years. Chef Bonanno asks a technical question about starch content for gnocchi, and then Chef Miller goes off on French fries.

“I’ve been working on trying to break the consumers’ McDonald’s mentality on what a French fry should be,” Miller says. The sheer volume is a perfect example of how hard it can be to assemble the pieces of a sustainable and local food system. “We’re talking about thousands of pounds of French fries,” he says, the other chefs nodding in agreement. “You want to have a local French fry, but at a certain point it’s not sustainable or feasible. Or yummy.” One recent hitch: a harvest of local spuds were afflicted by hollow heart disease.

Genger’s heirloom potato trials have focused on specialty varieties—yellows, reds and blues—but Genger has an alternative: “We have some white potatoes that are pretty good producers organically, but what I tend to hear is that most people don’t like white potatoes.” The chefs don’t seem worried about the difference. “There are some good, white varieties from back in the days when that was what a potato was,” Genger continues, making a note. Knowing that the interest is there, she can make sure farmers and chefs have a chance to evaluate some white heirloom potatoes.

It’s a short conversation, really, but shows the potential value of having everybody at the table. If the breeder has the right plant, the farmers have a good growing experience and the chefs approve, perhaps in another couple of years there could be thousands of pounds of locally sourced organic white French-fried potatoes ferrying salt and mayonnaise and ketchup to the taste buds of Wisconsin diners.

“We try to make the project practical,” says Dawson. “The food system is so complicated. It feels like this is something we can make a difference with. This can help some farmers now, and in 10 years hopefully it will be helping them even more.”

Bill Tracy puts the program in an even bigger context.

“The decisions we make today create the future,” Tracy says. “The choices we make about what crops to work in and what traits to work in literally will create the future of agriculture.”

Farmers, gardeners and chefs are welcome to join the Seed to Kitchen Collaborative. You can learn more about project events at http://go.wisc.edu/seed2kitchen or email Julie Dawson at dawson@hort.wisc.edu.

Going for the Gut

How do we keep food animals healthy when bacteria and other pathogens are so good at outsmarting drugs intended to work against them?

In an innovation that holds great promise, CALS animal sciences professor Mark Cook and scientist Jordan Sand have developed an antibiotic-free method to protect animals raised for food against common infections.

The innovation comes as growing public concern about antibiotic resistance has induced McDonald’s, Tyson Foods and other industry giants to announce major cuts in antibiotic use in meat production. About 80 percent of antibiotics in the United States are used by farmers because they both protect against disease and accelerate weight gain in many farm animals.

The overuse of antibiotics in agriculture and human medicine has created a public health crisis of drug-resistant infections, such as multidrug-resistant Staphylococcus aureus (MRSA) and “flesh-eating bacteria.”

“You really can’t control the bugs forever; they will always evolve a way to defeat your drugs,” says Cook.

Cook and Sand’s current work focuses on a fundamental immune “off-switch” called Interleukin 10 or IL-10, manipulated by bacteria and many other pathogens to defeat the immune system during infection. He and Sand have learned to disable this off-switch inside the intestine, the site of major farm animal infections such as the diarrheal disease coccidiosis.

“People have manipulated the immune system for decades, but we are doing it in the lumen of the gastrointestinal system. Nobody has done that before,” Cook says.
Cook vaccinates laying hens to create antibodies to IL-10. The hens transfer the antibody to their eggs, which are then blended, pasteurized and sprayed on the feed of the animals he wants to protect. The antibody neutralizes the IL-10 off-switch in those animals, allowing their immune systems to better fight disease.

In experiments with more than 300,000 chickens, those that ate the antibody-bearing material were fully protected against coccidiosis and other gastrointestinal diseases that commonly affect poultry.

Smaller tests with larger animals also show promise. In one example, animal sciences professor Dan Schaefer and his graduate research assistant, Mitch Schaefer, halved the rate of bovine respiratory disease in beef steers by feeding them the IL-10 antibody for 14 days.

Cook and Sand, who have been working on the IL-10 system since 2011, are forming Ab E Discovery LLC to commercialize their research. One of the four patents they have filed through the Wisconsin Alumni Research Foundation has just been granted, and WARF has awarded a $100,000 Accelerator Program grant to the inventors to pursue the antibiotic-replacement technology. The Discovery to Product partnership between UW and WARF played a key role in helping Cook and Sand prepare it for commercialization.

Cook has already turned his research and some 40 patented technologies into start-up companies including Aova Technologies, which improves animal growth and feed efficiency, and Isomark LLC, which is developing a technology for early detection of infection in human breath.

PHOTO: Eggs from these hens contained antibodies that were used to test the antibiotic replacement. (Photo courtesy of Mark Staudt, WARF)

Plant Prowess

It may look jury-rigged, but it’s cutting-edge science.

In a back room in the university’s Seeds Building, researchers scan ears of corn—three at a time—on a flatbed scanner, the kind you’d find at any office supply store. After running the ears through a shelling machine, they image the de-kerneled cobs on a second scanner.

The resulting image files—up to 40 gigabytes’ worth per day—are then run through a custom-made software program that outputs an array of yield-related data for each individual ear. Ultimately, the scientists hope to link this type of information—along with lots of other descriptive data about how the plants grow and what they look like—back to the genes that govern those physical traits. It’s part of a massive national effort to deliver on the promise of the corn genome, which was sequenced back in 2009, and help speed the plant breeding process for this widely grown crop.

“When it comes to crop improvement, the genotype is more or less useless without attaching it to performance,” explains Bill Tracy, professor and chair of the Department of Agronomy. “The big thing is phenotyping—getting an accurate and useful description of the organism—and connecting that information back to specific genes. It’s the biggest thing in our area of plant sciences right now, and we as a college are playing a big role in that.”

No surprise there. Since the college’s founding, plant scientists at CALS have been tackling some of the biggest issues of their day. Established in 1889 to help fulfill the University of Wisconsin’s land grant mission, the college focused on supporting the state’s fledgling farmers, helping them figure out how to grow crops and make a living at it. At the same time, this practical assistance almost always included a more basic research component, as researchers sought to understand the underlying biology, chemistry and physics of agricultural problems.

That approach continues to this day, with CALS plant scientists working to address the ever-evolving agricultural and natural resource challenges facing the state, the nation and the world. Taken together, this group constitutes a research powerhouse, with members based in almost half of the college’s departments, including agronomy, bacteriology, biochemistry, entomology, forest and wildlife ecology, genetics, horticulture, plant pathology and soil science.

“One of our big strengths here is that we span the complete breadth of the plant sciences,” notes Rick Lindroth, associate dean for research at CALS and a professor of entomology. “We have expertise across the full spectrum—from laboratory to field, from molecules to ecosystems.”

This puts the college in the exciting position of tackling some of the most complex and important issues of our time, including those on the applied science front, the basic science front—and at the exciting new interface where the two approaches are starting to intersect, such as the corn phenotyping project.

“The tools of genomics, informatics and computation are creating unprecedented opportunities to investigate and improve plants for humans, livestock and the natural world,” says Lindroth. “With our historic strength in both basic and applied plant sciences, the college is well positioned to help lead the nation at this scientific frontier.”

It’s hard to imagine what Wisconsin’s agricultural economy would look like today without the assistance of CALS’ applied plant scientists.

The college’s early horticulturalists helped the first generation of cranberry growers turn a wild bog berry into an economic crop. Pioneering plant pathologists identified devastating diseases in cabbage and potato, and then developed new disease-resistant varieties. CALS agronomists led the development of the key forage crops—including alfalfa and corn—that feed our state’s dairy cows.

Fast-forward to 2015: Wisconsin is the top producer of cranberries, is third in the nation in potatoes and has become America’s Dairyland. And CALS continues to serve the state’s agricultural industry.

The college’s robust program covers a wide variety of crops and cropping systems, with researchers addressing issues of disease, insect and weed control; water and soil conservation; nutrient management; crop rotation and more. The college is also home to a dozen public plant-breeding programs—for sweet corn, beet, carrot, onion, potato, cranberry, cucumber, melon, bean, pepper, squash, field corn and oats—that have produced scores of valuable new varieties over the years, including a number of “home runs” such as the Snowden potato, a popular potato chip variety, and the HyRed cranberry, a fast-ripening berry designed for Wisconsin’s short growing season.

While CALS plant scientists do this work, they also train the next generation of researchers—lots of them. The college’s Plant Breeding and Plant Genetics Program, with faculty from nine departments, has trained more graduate students than any other such program in the nation. Just this past fall, the Biology Major launched a new plant biology option in response to growing interest among undergraduates.

“If you go to any major seed company, you’ll find people in the very top leadership positions who were students here in our plant-breeding program,” says Irwin Goldman PhD’91, professor and chair of the Department of Horticulture.

Among the college’s longstanding partnerships, CALS’ relationship with the state’s potato growers is particularly strong, with generations of potato growers working alongside generations of CALS scientists. The Wisconsin Potato and Vegetable Growers Association (WPVGA), the commodity group that supports the industry, spends more than $300,000 on CALS-led research each year, and the group helped fund the professorship that brought Jeff Endelman, a national leader in statistical genetics, to campus in 2013 to lead the university’s potato-breeding program.

“Research is the watchword of the Wisconsin potato and vegetable industry,” says Tamas Houlihan, executive director of the WPVGA. “We enjoy a strong partnership with CALS researchers in an ongoing effort to solve problems and improve crops, all with the goal of enhancing the economic vitality of Wisconsin farmers.”

Over the decades, multi-disciplinary teams of CALS experts have coalesced around certain crops, including potato, pooling their expertise.

“Once you get this kind of core group working, it allows you to do really high-impact work,” notes Patty McManus, professor and chair of the Department of Plant Pathology and a UW–Extension fruit crops specialist.

CALS’ prowess in potato, for instance, helped the college land a five-year, $7.6 million grant from the U.S. Department of Agriculture to help reduce levels of acrylamide, a potential carcinogen, in French fries and potato chips. The multistate project involves plant breeders developing new lines of potato that contain lower amounts of reducing sugars (glucose and fructose) and asparagine, which combine to form acrylamide when potatoes are fried. More than a handful of conventionally bred, low-acrylamide potato varieties are expected to be ready for commercial evaluations within a couple of growing seasons.

“It’s a national effort,” says project manager Paul Bethke, associate professor of horticulture and USDA-ARS plant physiologist. “And by its nature, there’s a lot of cross-talk between the scientists and the industry.”

Working with industry and other partners, CALS researchers are responding to other emerging trends, including the growing interest in sustainable agricultural systems.

“Maybe 50 years ago, people focused solely on yield, but that’s not the way people think anymore. Our crop production people cannot just think about crop production, they have to think about agroecology, about sustainability,” notes Tracy. “Every faculty member doing production research in the agronomy department, I believe, has done some kind of organic research at one time or another.”

Embracing this new focus, over the past two years CALS has hired two new assistant professors—Erin Silva, in plant pathology, who has responsibilities in organic agriculture, and Julie Dawson, in horticulture, who specializes in urban and regional food systems.

“We still have strong partnerships with the commodity groups, the cranberries, the potatoes, but we’ve also started serving a new clientele—the people in urban agriculture and organics that weren’t on the scene for us 30 years ago,” says Goldman. “So we have a lot of longtime partners, and then some new ones, too.”

Working alongside their applied colleagues, the college’s basic plant scientists have engaged in parallel efforts to reveal fundamental truths about plant biology—truths that often underpin future advances on the applied side of things.

For example, a team led by Aurélie Rakotondrafara, an assistant professor of plant pathology, recently found a genetic element—a stretch of genetic code—in an RNA-based plant virus that has a very useful property. The element, known as an internal ribosome entry site, or IRES, functions like a “landing pad” for the type of cellular machine that turns genes—once they’ve been encoded in RNA—into proteins. (A Biology 101 refresher: DNA—>RNA—>Protein.)

This viral element, when harnessed as a tool of biotechnology, has the power to transform the way scientists do their work, allowing them to bypass a longstanding roadblock faced by plant researchers.

“Under the traditional mechanism of translation, one RNA codes for one protein,” explains Rakotondrafara. “With this IRES, however, we will be able to express several proteins at once from the same RNA.”

Rakotondrafara’s discovery, which won an Innovation Award from the Wisconsin Alumni Research Foundation (WARF) this past fall and is in the process of being patented, opens new doors for basic researchers, and it could also be a boon for biotech companies that want to produce biopharmaceuticals, including multicomponent drug cocktails, from plants.

Already, Rakotondrafara is working with Madison-based PhylloTech LLC to see if her new IRES can improve the company’s tobacco plant-based biofarming system.

“The idea is to produce the proteins we need from plants,” says Jennifer Gottwald, a technology officer at WARF. “There hasn’t been a good way to do this before, and Rakotondrafara’s discovery could actually get this over the hump and make it work.”

While Rakotondrafara is a basic scientist whose research happened to yield a powerful application, CALS has a growing number of scientists—including those involved in the corn phenotyping project—who are working at the exciting new interface where basic and applied research overlap. This new space, created through the mind-boggling advances in genomics, informatics and computation made in recent years, is home to an emerging scientific field where genetic information and other forms of “big data” will soon be used to guide in-the-field plant-breeding efforts.

Sequencing the genome of an organism, for instance, “is almost trivial in both cost and difficulty now,” notes agronomy’s Bill Tracy. But a genome—or even a set of 1,000 genomes—is only so helpful.

What plant scientists and farmers want is the ability to link the genetic information inside different corn varieties—that is, the activity of specific genes inside various corn plants—to particular plant traits observed in the greenhouse or the field. The work of chronicling these traits, known as phenotyping, is complex because plants behave differently in different environments—for instance, growing taller in some regions and shorter in others.

“That’s one of the things that the de Leon and Kaeppler labs are now moving their focus to—massive phenotyping. They’ve been doing it for a while, but they’re really ramping up now,” says Tracy, referring to agronomy faculty members Natalia de Leon MS’00 PhD’02 and Shawn Kaeppler.

After receiving a large grant from the Great Lakes Bioenergy Research Center in 2007, de Leon and Kaeppler decided to integrate their two research programs. They haven’t looked back. With de Leon’s more applied background in plant breeding and field evaluation, plus quantitative genetics, and with Kaeppler’s more basic corn genetics expertise, the two complement each other well. The duo have had great success securing funding for their various projects from agencies including the National Science Foundation, the U.S. Department of Agriculture and the U.S. Department of Energy.

“A lot of our focus has been on biofuel traits, but we measure other types of economically valuable traits as well, such as yield, drought tolerance, cold tolerance and others,” says Kaeppler. Part of the work involves collaborating with bioinformatics experts to develop advanced imaging technologies to quantify plant traits, projects that can involve assessing hundreds of plants at a time using tools such as lasers, drone-mounted cameras and hyperspectral cameras.

This work requires a lot of space to grow and evaluate plants, including greenhouse space with reliable climate control in which scientists can precisely measure the effects of environmental conditions on plant growth. That space, however, is in short supply on campus.

“A number of our researchers have multimillion-dollar grants that require thousands of plants to be grown, and we don’t always have the capacity for it,” says Goldman.

That’s because the Walnut Street Greenhouses, the main research greenhouses on campus, are already packed to the gills with potato plants, corn plants, cranberries, cucumbers, beans, alfalfa and dozens of other plant types. At any given moment, the facility has around 120 research projects under way, led by 50 or so different faculty members from across campus.

Another bottleneck is that half of the greenhouse space at Walnut Street is old and sorely outdated. The facility’s newer greenhouses, built in 2005, feature automated climate control, with overlapping systems of fans, vents, air conditioners and heaters that help maintain a pre-set temperature. The older houses, constructed of single-pane glass, date back to the early 1960s and present a number of challenges to run and maintain. Some don’t even have air conditioning—the existing electrical system can’t handle it. Temperatures in those houses can spike to more than 100 degrees during the summer.

“Most researchers need to keep their plants under fairly specific and constant conditions,” notes horticultural technician Deena Patterson. “So the new section greenhouse space is in much higher demand, as it provides the reliability that good research requires.”

To help ameliorate the situation, the college is gearing up to demolish the old structures and expand the newer structure, adding five more wings of greenhouse rooms, just slightly north of the current location—out from under the shadow of the cooling tower of the West Campus Co-Generation Facility power plant, which went online in 2005. The project, which will be funded through a combination of state and private money, is one of the university’s top building priorities.

Fortunately, despite the existing limitations, the college’s plant sciences research enterprise continues apace. Kaeppler and de Leon, for example, are involved in an exciting phenotyping project known as Genomes to Fields, which is being championed by corn grower groups around the nation. These same groups helped jump-start an earlier federal effort to sequence the genomes of many important plants, including corn.

“Now they’re pushing for the next step, which is taking that sequence and turning it into products,” says Kaeppler. “They are providing initial funding to try to grow Genomes to Fields into a big, federally funded initiative, similar to the sequencing project.”

It’s a massive undertaking. Over 1,000 different varieties of corn are being grown and evaluated in 22 environments across 13 states and one Canadian province. Scientists from more than a dozen institutions are involved, gathering traditional information about yield, plant height and flowering times, as well as more complex phenotypic information generated through advanced imaging technologies. To this mountain of data, they add each corn plant’s unique genetic sequence.

“You take all of this data and just run millions and billions of associations for all of these different traits and genotypes,” says de Leon, who is a co-principal investigator on the project. “Then you start needing supercomputers.”

Once all of the dots are connected—when scientists understand how each individual gene impacts plant growth under various environmental conditions—the process of plant breeding will enter a new sphere.

“The idea is that instead of having to wait for a corn plant to grow for five months to measure a certain trait out in the field, we can now take DNA from the leaves of little corn seedlings, genotype them and make decisions within a couple of weeks regarding which ones to advance and which to discard,” says de Leon. “The challenge now is how to be able to make those types of predictions across many environments, including some that we have never measured before.”

To get to that point, notes de Leon, a lot more phenotypic information still needs to be collected—including hundreds and perhaps thousands more images of corn ears and cobs taken using flatbed scanners.

“Our enhanced understanding of how all of these traits are genetically controlled under variable environmental conditions allows us to continue to increase the efficiency of plant improvement to help meet the feed, food and fiber needs of the world’s growing population,” she says.

Sidebar:

The Bigger Picture

Crop breeders aren’t the only scientists doing large-scale phenotyping work. Ecologists, too, are increasingly using that approach to identify the genetic factors that impact the lives of plants, as well as shape the effects of plants on their natural surroundings.

“Scientists are starting to look at how particular genes in dominant organisms in an environment—often trees—eventually shape how the ecosystem functions,” says entomology professor Rick Lindroth, who also serves as CALS’ associate dean for research. “Certain key genes are driving many fantastically interesting and important community- and ecosystem-level interactions.”

How can tree genes have such broad impacts? Scientists are discovering that the answer, in many cases, lies in plant chemistry.
“A tree’s chemical composition, which is largely determined by its genes, affects the community of insects that live on it, and also the birds that visit to eat the insects,” explains Lindroth. “Similarly, chemicals in a tree’s leaves affect the quality of the leaf litter on the ground below it, impacting nutrient cycling and nitrogen availability in nearby soils.”

A number of years ago Lindroth’s team embarked on a long-term “genes-to-ecosystems” project (as these kinds of studies are called) involving aspen trees. They scoured the Wisconsin landscape, collecting root samples from 500 different aspens. From each sample, they propagated three or four baby trees, and then in 2010 planted all 1,800 saplings in a so-called “common garden” at the CALS-based Arlington Agricultural Research Station.

“The way a common garden works is, you put many genetic strains of a single species in a similar environment. If phenotypic differences are expressed within the group, then the likelihood is that those differences are due to their genetics, not the environment,” explains Lindroth.

Now that the trees have had some time to grow, Lindroth’s team has started gathering data about each tree—information such as bud break, bud set, tree size, leaf shape, leaf chemistry, numbers and types of bugs on the trees, and more.

Lindroth and his partners will soon have access to the genetic sequence of all 500 aspen genetic types. Graduate student Hilary Bultman and postdoctoral researcher Jennifer Riehl will do the advanced statistical analysis involved—number crunching that will reveal which genes underlie the phenotypic differences they see.

In this and in other projects, Lindroth has called upon the expertise of colleagues across campus, developing strategic collaborations as needed. That’s easy to do at UW–Madison, notes Lindroth, where there are world-class plant scientists working across the full spectrum of the natural resources field—from tree physiology to carbon cycling to climate change.

“That’s the beauty of being at a place like Wisconsin,” Lindroth says.

Want to help? The college welcomes your gift toward modernizing the Walnut Street Greenhouses. To donate, please visit: supportuw.org/giveto/WalnutGreenhouse. We thank you for your contribution.
Continue reading

“Open Source” Seeds for All

Scientists, farmers and sustainable food systems advocates recently celebrated the release of 29 new varieties of broccoli, celery, kale and other vegetables and grains that have something unusual in common: a new form of ownership agreement known as the Open Source Seed Pledge.

The pledge, developed through a nationwide effort called the Open Source Seed Initiative, is designed to keep the new seeds free for all people to grow, breed and share for perpetuity, with the goal of protecting the plants from patents and other restrictions.

CALS professors Irwin Goldman (horticulture) and Jack Kloppenburg (community and environmental sociology) have been leaders in the initiative, which arose in response to the decreasing availability of plant germplasm—seeds—for public plant breeders and farmer-breeders to work with.

Many of the seeds for our nation’s big crop plants—field corn and soybeans—are already restricted through patents and licenses. Increasingly this is happening to vegetable, fruit and small grain seeds.

Goldman, who breeds beets, carrots and onions, still plans to license many of his new varieties as usual through the Wisconsin Alumni Research Foundation (WARF), which has been supportive of his interest in open source seeds. But he’s pleased he now has an alternative for when he wants to share new varieties with fellow public plant breeders or small seed companies.

“These vegetables are part of our common cultural heritage, and our goal is to make sure these seeds remain in the public domain for people to use in the future,” he says.

Creating a Healthier World

YOU CAN’T SPOT THEM RIGHT AWAY—they’re hidden in plain sight, often disguised as majors in the life sciences—but there are thousands of undergraduates on the University of Wisconsin–Madison campus who, in terms of their future careers, consider themselves “pre-health.”

What are their reasons? For some students, the motivation is acutely personal. As a child, Kevin Cleary BS’13 (biology) felt an urgent need to help as he watched his father deal with recurrent brain tumors. “By age 11, I knew I had a future in health care,” says Cleary. Many others aren’t yet sure what role they will play, but they are eager for guidance on how to use their majors to address an array of global problems including hunger, disease, poverty and environmental degradation. Says senior biochemistry major Yuli Chen, “I want to make an impact on people, and I believe that every person has the right to be provided basic necessities such as clean water, education and food.”

For much of the past century, young people seeking to address health-related suffering may have felt relatively limited in their options. Most considered medical school (still the gold standard to many), nursing school or other familiar allied health occupations that are largely oriented toward addressing disease after it occurs.

In recent years, however, health experts worldwide have placed an increasing emphasis on the importance of prevention in achieving health for the largest possible number of people. This was illustrated at UW–Madison in 2005, when the University of Wisconsin Medical School changed its name to the School of Medicine and Public Health, offering the following reason: “Public health focuses on health promotion and disease prevention at the level of populations, while medicine focuses on individual care, with an emphasis on the diagnosis and treatment of disease. Ideally these approaches should be seamlessly integrated in practice, education and research.”

The founding in 2011 of the interdisciplinary Global Health Institute (GHI), a partnership of schools, colleges and other units across campus, broadened the university’s approach to health still further:

“We view the health of individuals and populations through a holistic context of healthy places upon which public health depends—from neighborhoods and national policies to the state of the global environment. This approach requires collaboration from across the entire campus to address health care, food security and sustainable agriculture, water and sanitation, environmental sustainability, and ‘one health’ perspectives that integrate the health of humans, animals and the environment.”

Demand by UW students for educational options built around this broad concept of health had been growing for some time. Before the creation of the GHI, an Undergraduate Certificate in Global Health was introduced to offer students an understanding of public health in a global context. The certificate explores global health issues and possible solutions—and shows students how their own majors and intended professions might make those solutions reality. Although administered from CALS and directed by CALS nutritional sciences professor Sherry Tanumihardjo, the certificate accepts students from across campus and highlights ways in which teachers, engineers, farmers, social workers, journalists, nutritionists, policy makers, and most other professions can play a role in global health. Funding is provided through the Madison Initiative for Undergraduates, grants and private donations.

Earning the certificate requires completion of core courses focusing heavily on agriculture and nutrition, the importance of prevention and population-level approaches in public health, and the role of the environment in health. Students also complete relevant electives (examples: women’s health and human rights, environmental health, international development), and—most transformative for students—a field course, usually a one- to three-week trip either abroad or to a location in the United States where a particular global health issue is being addressed by one or more local partner organizations in ways specific to the place and the people who live there.

Class Act: The Big Picture on Food

She’s picked vegetables on West Coast farms, worked to improve health, education and housing in immigrant communities on the Texas-Mexico border and, most recently, spent a semester in Peru, where she attended Pontificia University and worked with a non-governmental organization on food security.

As a double major in agricultural economics and Latin American studies—with an academic record that led to a recent Outstanding Sophomore Award from the Wisconsin Agricultural and Life Sciences Alumni Association—Patricia Paskov is trying to get the big picture on food.

It all started with a little story. “My grandfather, an immigrant from a tiny island in Croatia, claims to have survived the earliest years of his childhood on the milk of one goat,” says Paskov. “I, on the other hand, grew up in suburbia and probably spent most of my childhood believing that food grew on grocery store shelves.”

As a young adult, Paskov resolved to learn more about where food comes from. A “three-week, no-frills farm experience” in California, as she describes it, gave a new focus to her life. “I began to understand that food is an undeniable social, economic and political force,” Paskov says.

Her interest in food policy grew during an internship with the Oakland-based nonprofit Food First, which conducts global work on food systems and is located near a part of the city that at the time had 30,000 residents but no grocery stores. “It’s almost as if this reality has prompted the community to take some of the most progressive steps forward in food justice,” Paskov says. “Community development programs, NGOs, and farm-to-plate programs abound in Oakland, igniting a role of agency amongst everyone.”

Paskov sees her life’s calling as helping to make the world a better place food-wise. “I see myself working in the public or third sector, contributing to international decisions regarding food, agriculture, national resources and rural development,” she says. “In the upcoming years, population growth and climate change will largely affect how the agricultural market functions—and food policy will be a more important field than ever.”

Field Notes: Potato Exchange Benefits Peruvians

In the growing region around Puno, Peru, farmers hedge their bets.

Located 12,000 feet above sea level, on the side of an Andean mountain, Puno has a growing season that’s short, cool and prone to frost. The staple food of the area is potato, and local farmers plant dozens of different varieties on their plots—some that they relish for their flavor, as well as some less palatable, frost-tolerant types.

In good years everything grows well and families have plenty to eat. In bad years—when there is an unseasonable or particularly hard frost—their preferred plants fail, and they must rely on the small, bitter potatoes produced by the hardy survivors.

Soon, however, they will have a better option. For the past two growing seasons, farmers near Puno and in three Peruvian highland villages have participated in a project to grow and test frost-tolerant versions of their favorite local varieties, with great success.

These special potato plants were developed in Wisconsin by a team of CALS plant scientists and plant breeders using germplasm stored in the U.S. Potato Genebank, located in Sturgeon Bay.

“I think this is the first case where a potato developed in the U.S. has been accepted by local farmers in these communities in the Andes,” says project coordinator Alfonso del Rio, an associate scientist in the lab of John Bamberg. As an employee of the USDA’s Agricultural Research Service, Bamberg serves as director of the U.S. Potato Genebank. He is also a professor of horticulture with CALS.

The plant materials used for the project, like the vast majority found in the U.S. Potato Genebank, were brought to the United States from the Andes, the potato’s site of origin. This makes the project a special opportunity for potato breeders in the United States to give something back.

“We’re interested in returning the benefits of our genebank to Peru and the broader Andean region because that’s the area that supplied our country with germplasm,” says Bamberg, who led the project’s breeding effort. Earlier work by CALS horticulture professor Jiwan Palta, the third member of the team, made modern marker-assisted breeding for frost tolerance possible.

To make the new potato lines, Bamberg took an exceptionally frost-tolerant wild relative of the potato family—a weed, basically—and crossed it with seven popular native Peruvian potato varieties to generate frost-tolerant versions of the native potato plants.

Although the new potato lines were originally meant to be added to Peru’s national potato breeding program as germplasm for further breeding, the farmers who were involved in the trials are eager to start growing some of them right away. And no wonder. This past growing season in Puno, after a late, hard frost, a few of the new frost-tolerant lines far outperformed the local varieties, yielding twice as many pounds of potato per plot.

The CALS team hopes these more dependable potato plants will help bolster Peru’s vulnerable rural communities.

“If the farmers could send part of their harvest to market, even 10 or 20 percent, they could have some money to invest in community development—in things like clinics, schools and libraries,” says del Rio.

Field Notes: Certified Seed Potatoes for Kenya

When scientists in Kenya needed help developing a certification program for seed potatoes, a CALS plant pathologist stepped up to the task.

The new program is run by Kenya’s Agricultural Development Corporation (ADC), a government-controlled agency charged with improving agricultural programs throughout the nation.

“They were looking for somebody to help improve their certification program. Since it’s my job at the UW to do this kind of thing, I applied,” says Brooke Weber, a scientist with the CALS-based Wisconsin Seed Potato Certification Tissue Culture Laboratory, which helps produce certified disease-free seed potatoes for Wisconsin growers.

A nonprofit agency called CNFA, which supports economic growth in the developing world by empowering the private sector, selected Weber for the position, paying for her flight to Nairobi as well as her three-week visit to the ADC Molo Seed Potato Complex in Kenya’s Rift Valley Province.

On her first day at ADC, Weber went straight to the tissue culture laboratory and greenhouse facilities to learn about ADC’S main areas of concern and to discuss how to make her trip as productive as possible. From there, Weber launched into training ADC scientists how to run various diagnostic tests for plant-associated microorganisms at the tissue culture and greenhouse level.

It didn’t take long for her to experience one of the obstacles her peers in Kenya regularly face. “The electricity cuts in and out. If you are working in a sterile hood, the fan will go out and there’s nothing you can do about it. It takes a few minutes for the backup generator to kick in,” says Weber. “Still, I was really impressed by how well their tissue culture lab worked, considering the less-than-ideal conditions.”

Due to limitations associated with the available diagnostic tests, Weber recommended that ADC implement a broad pathogen eradication procedure for all of the company’s potato lines. “It’s very expensive to initiate numerous diagnostic tests, so a lot of times when you don’t know what microorganisms are present, it’s better to assume everything is infected and put all plants through a curing process,” she says.

Weber was also able to share some helpful tips to improve the company’s tissue culture media, increase lighting in the growth rooms and optimize the nutrient solution sprayed in the aeroponic systems used to grow mini-tubers.

Since returning to Madison Weber has stayed in contact with ADC scientists, exchanging e-mail correspondence regularly. She plans to assist with the pathogen eradication procedure from Madison, offering advice and answering questions via e-mail and Skype as needed.

“It is an ongoing project,” Weber says. “That has been the most rewarding part of this experience.”

The Value of GMOs

For all the discussion surrounding genetically modified foods, there have been strikingly few comprehensive studies that put a numeric value on the costs and benefits.

Now there’s more to talk about.

By analyzing two decades’ worth of corn yield data from Wisconsin, a team of CALS researchers has quantified the impact that various popular transgenes have on grain yield and production risk compared to conventional corn. Their analysis, published in Nature Biotechnology, confirms the general understanding that the major benefit of genetically modified (GM) corn doesn’t come from increasing yields in average or good years—but from reducing losses during bad ones.

“For the first time we have an estimate of what genetically modified hybrids mean as far as value for the farmer,” says CALS and UW-Extension corn agronomist Joe Lauer, who led the study.

Lauer has been gathering corn yield and other data for the past 20 years as part of the Wisconsin Corn Hybrid Performance Trials, a project he directs. Each year his team tests about 500 different hybrid corn varieties at more than a dozen sites around the state, with the goal of providing unbiased performance comparisons of hybrid seed corn for the state’s farmers. When GM hybrids became available in 1996, Lauer started including them in the trials.

“It’s a long-term data set that documents one of the most dramatic revolutions in agriculture—the introduction of transgenic crops,” says Lauer, who collaborated with CALS agricultural economists Guanming Shi and Jean-Paul Chavas to conduct the statistical analysis, which considered grain yield and production risk separately.

Grain yield varied quite a bit among GM hybrids. While most transgenes boosted yields, a few significantly reduced production. At the positive end of the spectrum was the Bt for European corn borer (ECB) trait. Yield data from all of the ECB hybrids grown in the trials over the years showed that ECB plants out-yielded conventional hybrids by an average of more than six bushels per acre per year. On the other hand, grain yields from hybrids with the Bt for corn rootworm (CRW) transgene trailed those of regular hybrids by a whopping 12 bushels per acre. But even among poor-performing groups of GM corn, there are individual varieties that perform quite well, Lauer notes.

Where transgenic corn clearly excels is in reducing production risk. The researchers found that every GM trait package—whether single gene or stacked genes—helped lower variability. For farmers, lower variability means lower risk, as it gives them more certainty about the yield levels they can expect.

Lauer equates choosing GM crops with purchasing solid-performing, low-risk stocks. Just as safe stocks have relatively low volatility, yields from GM crops don’t swing as wildly from year to year, and most important, their downswings aren’t as deep.

GM crops help reduce downside risk by reducing losses in the event of disease, pests or drought. Economists Shi and Chavas estimated the risk reduction provided by modified corn to be equivalent to a yield increase ranging from 0.8 to 4.2 bushels per acre, depending on the variety.

Risk reduction associated with GM corn can add up to significant savings for farmers—as much as $50,000 for 1,000 acres, calculates Lauer. “It depends on the price that farmers can receive for corn,” he says.

But the two factors quantified in this study—yield and production risk—are just part of the overall picture about GM crops, says Lauer. He notes there are other quantifiable values, such as reduced pesticide use, as well as ongoing concerns about the safety and health of growing and eating genetically modified foods.

“There’s a lot of concern about this biotechnology and how it’s going to work down the road,” says Lauer, “yet farmers have embraced it and adopted it here in the U.S. because it reduces risk and the yield increases have been as good as—or some would argue a little better than—what we’ve seen with regular hybrid corn.”

“Highway Robbery” Has Far-Reaching Costs

In the busy port town of Tema, Ghana, the driver of a tanker truck of gasoline northbound for Bamako, Mali, loads a few dozen pineapples onto his rig and sets out for the distant capital city. His six-day drive will take him through 60 checkpoints, where he will pay about $200 in small bribes to police, customs and other officials, offering gifts of pineapples to speed his way through these delays.

In Madaoua, Niger, a southbound trucker bringing onions to the market in Accra, Ghana, will pay $580 in bribes along his 2,000-kilometer route and be delayed nearly six hours, adding $1,165 to his total transport costs.

Such stories are commonplace among thousands of drivers in West Africa for whom bribes are simply the cost of doing business. But taken as a whole, this form of petty corruption does a lot of damage to the region’s economy.

Professor and UW-Extension specialist Jeremy Foltz and professor Dan Bromley, both from the CALS Department of Agricultural and Applied Economics, used a unique data set compiled by USAID teams to put some numbers on it.

Analyzing detailed surveys of more than 1,500 long-haul truckers in Mali, Burkina Faso and Ghana, including data on amounts and collectors of bribes, Bromley and Foltz estimate that corruption costs—focusing on losses from time delays and bribes paid—add 15 to 30 percent to the cost of transporting food
and other products to and from markets in the region.

Foltz became interested in the topic when his own car was stopped by bribe-seeking police during his Fulbright fellowship in Mali a few years ago. “Bribe-taking at highway checkpoints is widespread,” Foltz says. “Because it appears that the profits are shared all the way up the chain of command, it’s immune to quick policy fixes.”

Such corruption hurts the economy in far-reaching ways. At stake, Foltz and Bromley say, are prices paid to farmers growing products for export to distant markets. With increased transport costs eating into profits, farmers gradually abandon certain crops such as cashew trees that grow well on marginal lands and prevent soil erosion.

“The issue here is that net returns suffer, agricultural investments are necessarily delayed, yields fall, and soon attentive management is not worth the trouble,” they wrote in an article for Natural Resources Forum. “Fields and specific crops are left unattended. Tree crops are ignored or ripped out. Economic malaise sets in. Sustainability suffers.”

But the damage doesn’t end there. “Petty corruption of the type we are studying has a more deleterious effect on private investment than larger-scale government corruption,” says Foltz. “African countries have some of the lowest levels of foreign investment in the world and can ill afford to perpetuate a system that hampers growth even more than taxation.”

Foltz and Bromley are now focusing on understanding the structures, incentives and constraints to corruption, with the goal of providing information to policy makers and others seeking to eliminate this important barrier to development.

The outbreak of violent warfare in the region has not made their work any easier—or less needed.

“We’re studying the impact of new anti-corruption policies in Ghana and also how civil conflicts affect corruption,” says Foltz. “For example, in the recent conflict in Ivory Coast, rebel militias funded their operations in part by extorting bribes that were three or four times higher than normal. In Mali, rebels have used kidnapping and drug smuggling to raise money.”

Five things everyone should know about… Hazelnuts

1   They’re crazy nutritious and gluten-free. Hazelnuts are rich in vitamins (particularly vitamin E and B-complex groups of vitamins, including folates, riboflavin, niacin, thiamin) as well as dietary fiber. Like almonds, they are gluten-free. They also are rich in monounsaturated fatty acids such as oleic acid and linoleic acid, which help reduce LDL, the “bad” cholesterol, and increase HDL, the “good” cholesterol.

2   An exciting market beckons. Hazelnut oil serves various purposes in the kitchen (most notably as salad and cooking oil) as well as in cosmetics and pharmaceuticals. Kernels can be eaten fresh; used in baked goods, confections and other edibles; or ground for use in nut flours. An appetite is growing for spreadable hazelnut butters (Nutella, anyone?). And then there’s biofuel—the high oleic acid content makes hazelnuts an excellent feedstock for biodiesel and bio-industrial products.

3   They’re good for the environment. As a long-lived woody perennial, hazelnut bush plantings can be used to stabilize sensitive soils and erodible sites. Plantings do not have to be reestablished for decades. They can be closely associated with other high-diversity approaches to agriculture, including agroforestry and multicrop plantings. Since American hazel is a prominent native, there is no risk of invasiveness, and interrelationships to support Wisconsin wildlife are well established. In addition, hazel production readily integrates with small and medium-sized farming operations and family/cooperative farm unit organization.

4   Growers are emerging in the Midwest, including in Wisconsin. Southern Europe is still king in world hazelnut production, with Turkey leading at 75 percent. In the United States, commercial hazelnut production is still limited to the Pacific Northwest, where the climate allows for growing European cultivars. But a number of Midwestern farmers are trying their hand with two species, American (Corylus americana) and beaked (Corylus cornuta), that do well in cold climates and sandy soils. Surveys have identified about 130 hazelnut growers in Wisconsin, Minnesota and Iowa, with nearly 135 acres in production.

5   Important genetics work is underway. Farmers now growing Midwestern hazelnuts are also growing important data as there are, as yet, no commercially proven cultivars of hazelnuts in this region. Breeders are working to develop genotypes focusing on both pure lines of native American hazel and on hybrid crosses between European and American. By selecting from the very diverse native populations and by crossing European with American, they hope to develop a hazelnut shrub with the nut quality and yield of the European and the cold-hardiness and disease tolerance of the American.

 

The Midwest Hazelnut Development Initiative (UMHDI, midwesthazelnuts.org) is a regional collaboration that includes representatives from UW–Madison and UW-Extension.

Jason Fischbach, an agriculture agent with UW-Extension and a program partner with UMHDI, contributed to this piece.

Protecting our Pollinators

People and bees have a long shared history. Honeybees, natives of Europe, were carried to the United States by early settlers to provide honey and wax for candles. As agriculture spread, bees became increasingly important to farmers as pollinators, inadvertently fertilizing plants by moving pollen from male to female plant parts as they collected nectar and pollen for food. Today, more than two-thirds of the world’s crop plants—including many nuts, fruits and vegetables—depend on animal pollination, with bees carrying the bulk of that load.

It’s no surprise that beekeeping has become a big business in the farm-rich Midwest. Wisconsin is one of the top honey-producing states in the country, with more than 60,000 commercial hives. The 2012 state honey crop was valued at $8.87 million, a 31 percent increase over the previous year, likely due in part to the mild winter of 2011–2012.

But other numbers are more troubling. Nationwide, honeybee populations have dropped precipitously in the past decade even as demand for pollination-dependent crops has risen. The unexplained deaths have been attributed to colony collapse disorder (CCD), a mysterious condition in which bees abandon their hives and simply disappear, leaving behind queens, broods and untouched stores of honey and pollen. Annual overwintering losses now average around 30 percent of managed colonies, hitting 31.1 percent this past winter; a decade ago losses were around 15 percent. Native bee species are more challenging to document, but there is some evidence that they are declining as well.

Despite extensive research, CCD has not been linked to any specific trigger. Parasitic mites, fungal infections and other diseases, poor nutrition, pesticide exposure and even climate change all have been implicated, but attempts to elucidate the roles of individual factors have failed to yield conclusive or satisfying answers. Even less is known about native bees and the factors that influence their health.

Poised at the interface of ecology and economy, bees highlight the complexity of human interactions with natural systems. As reports of disappearing pollinators fill the news, researchers at CALS are investigating the many factors at play—biological, environmental, social—to figure out what is happening to our bees, the impacts of our choices as farmers and consumers, and where we can go from here.