The Greenhouse as a Public Classroom

Just as some seeds yield tomatoes, carrots and lettuce, others grow community and partnership.

In a greenhouse in the northern Wisconsin town of Park Falls, all of those seeds are taking root with the help of CALS horticulture graduate student Michael Geiger, horticulture professor Sara Patterson and a team of dedicated local leaders.

“The greenhouse has opened doors to making healthier food choices, to education about gardening in local schools—and it’s given the university a presence in Park Falls,” says Geiger, who grew up in Arbor Vitae, some 50 miles away.

Geiger’s involvement with the Flambeau River Community Growing Center started four years ago when a friend in the area approached him for advice. Her group was seeking funding for a greenhouse project, and Geiger teamed with Patterson to identify possible revenue sources. They developed a proposal for the Ira and Ineva Reilly Baldwin Wisconsin Idea Endowment at UW–Madison.

By fall 2013, construction had begun on a 25-by- 50-foot vail-style greenhouse, built by community volunteers on a vacant lot donated by Flambeau River Papers just north of the mill. Plans call for the facility to eventually be heated with waste steam from the mill.

The Flambeau River Community Growing Center has gained popularity with community members and school groups interested in learning about plants and gardening. “It’s a greenhouse, but it’s also a classroom,” says Geiger.

Learners include children from the Chequamegon School District, who start seeds in the greenhouse and nurture seedlings until they can be transplanted to their own school gardens. Area 4–H groups grow plants and tend them in raised beds just outside the greenhouse. Master Gardener classes are held at the facility, and community workshops have included such topics as square-foot and container gardening as well as hydroponics. Kids have been delighted with sessions on soil testing and painting their own flowerpots.

“It’s clearly a benefit to build a connection between UW–Madison and the community, for the community itself—people from ages 3 to 90—and for the local schools,” Patterson says.

Community leaders and institutions have joined to fuel the center’s success. Its chief executive officer, Tony Thier, recently retired from Flambeau River Papers; UW–Extension has provided valuable educational and technical support; and volunteer opportunities draw professionals from various companies in the area. Park Falls attorney Janet Marvin helped the center gain nonprofit status last fall.

Thier says the center provides needed education for area residents. “It’s been very beneficial,” he says. “When I got involved, it really became a passion. I wanted to learn more about gardening and increase my skill. We try to involve the whole community.”

Geiger says the project has helped him in his academic career as he learned about project planning, gave presentations about the center at two national academic conferences and writes scholarly articles about his work there.

“I’ve been able to see this process through from an idea to reality,” says Geiger. “It’s been really rewarding.”

PHOTO – Michael Geiger (right) in the greenhouse at a hydroponic salad table workshop. The greenhouse features in-floor radiant heating and custom growing tables made of locally purchased white cedar and built by volunteers.

Photo credit – Michael Geiger

Ken Schroeder BS’93 MS’96 PhD’00

Ken Schroeder BS'93 MS'96 PhD'00

Ken Schroeder BS’93 MS’96 PhD’00

Ken Schroeder serves as the agricultural agent for Portage County, specializing in commercial vegetable production. He pursues that work in a variety of ways, from one-on-one consulting to group education and field tours. He conducts on-farm applied research in cooperation with area vegetable growers, and his current projects focus on improving the sustainability of vegetable production on irrigated land in Central Wisconsin. His statewide work includes serving on the UW–Extension Fresh Market and Commercial Vegetable Team, on the education committee of the Wisconsin Potato and Vegetable Growers Association (WPVGA) and on the central Wisconsin Groundwater Task Force. “My favorite part of my job is helping people. I enjoy working with farmers, agribusinesses and home gardeners, providing educational programing and resources where they live and work,” says Schroeder, who holds degrees in horticulture and in plant breeding and plant genetics.

Lisa Johnson BS’88 MS’99

Lisa Johnson BS'88 MS'99

Lisa Johnson BS’88 MS’99

Who helps our gardens grow? Lisa Johnson, who as a horticulture educator in Dane County offers information, advice, hands-on training and other resources to the general public and numerous other audiences including the commercial green industry (arborists, landscapers and garden centers), community gardens, the Master Gardener Volunteer program, the Dane County Tree Board, the City of Madison, and nonprofits Centro Hispano and Community GroundWorks. Her talks and presentations, newspaper columns, and appearances on Larry Meiller’s “Garden Talk” on Wisconsin Public Radio keep her very much in the public eye. Her education at CALS—where she earned a bachelor’s degree in horticulture and a master’s degree in life sciences communication—optimally prepared her for this particular mix of work, she says.

Plant Prowess

It may look jury-rigged, but it’s cutting-edge science.

In a back room in the university’s Seeds Building, researchers scan ears of corn—three at a time—on a flatbed scanner, the kind you’d find at any office supply store. After running the ears through a shelling machine, they image the de-kerneled cobs on a second scanner.

The resulting image files—up to 40 gigabytes’ worth per day—are then run through a custom-made software program that outputs an array of yield-related data for each individual ear. Ultimately, the scientists hope to link this type of information—along with lots of other descriptive data about how the plants grow and what they look like—back to the genes that govern those physical traits. It’s part of a massive national effort to deliver on the promise of the corn genome, which was sequenced back in 2009, and help speed the plant breeding process for this widely grown crop.

“When it comes to crop improvement, the genotype is more or less useless without attaching it to performance,” explains Bill Tracy, professor and chair of the Department of Agronomy. “The big thing is phenotyping—getting an accurate and useful description of the organism—and connecting that information back to specific genes. It’s the biggest thing in our area of plant sciences right now, and we as a college are playing a big role in that.”

No surprise there. Since the college’s founding, plant scientists at CALS have been tackling some of the biggest issues of their day. Established in 1889 to help fulfill the University of Wisconsin’s land grant mission, the college focused on supporting the state’s fledgling farmers, helping them figure out how to grow crops and make a living at it. At the same time, this practical assistance almost always included a more basic research component, as researchers sought to understand the underlying biology, chemistry and physics of agricultural problems.

That approach continues to this day, with CALS plant scientists working to address the ever-evolving agricultural and natural resource challenges facing the state, the nation and the world. Taken together, this group constitutes a research powerhouse, with members based in almost half of the college’s departments, including agronomy, bacteriology, biochemistry, entomology, forest and wildlife ecology, genetics, horticulture, plant pathology and soil science.

“One of our big strengths here is that we span the complete breadth of the plant sciences,” notes Rick Lindroth, associate dean for research at CALS and a professor of entomology. “We have expertise across the full spectrum—from laboratory to field, from molecules to ecosystems.”

This puts the college in the exciting position of tackling some of the most complex and important issues of our time, including those on the applied science front, the basic science front—and at the exciting new interface where the two approaches are starting to intersect, such as the corn phenotyping project.

“The tools of genomics, informatics and computation are creating unprecedented opportunities to investigate and improve plants for humans, livestock and the natural world,” says Lindroth. “With our historic strength in both basic and applied plant sciences, the college is well positioned to help lead the nation at this scientific frontier.”

It’s hard to imagine what Wisconsin’s agricultural economy would look like today without the assistance of CALS’ applied plant scientists.

The college’s early horticulturalists helped the first generation of cranberry growers turn a wild bog berry into an economic crop. Pioneering plant pathologists identified devastating diseases in cabbage and potato, and then developed new disease-resistant varieties. CALS agronomists led the development of the key forage crops—including alfalfa and corn—that feed our state’s dairy cows.

Fast-forward to 2015: Wisconsin is the top producer of cranberries, is third in the nation in potatoes and has become America’s Dairyland. And CALS continues to serve the state’s agricultural industry.

The college’s robust program covers a wide variety of crops and cropping systems, with researchers addressing issues of disease, insect and weed control; water and soil conservation; nutrient management; crop rotation and more. The college is also home to a dozen public plant-breeding programs—for sweet corn, beet, carrot, onion, potato, cranberry, cucumber, melon, bean, pepper, squash, field corn and oats—that have produced scores of valuable new varieties over the years, including a number of “home runs” such as the Snowden potato, a popular potato chip variety, and the HyRed cranberry, a fast-ripening berry designed for Wisconsin’s short growing season.

While CALS plant scientists do this work, they also train the next generation of researchers—lots of them. The college’s Plant Breeding and Plant Genetics Program, with faculty from nine departments, has trained more graduate students than any other such program in the nation. Just this past fall, the Biology Major launched a new plant biology option in response to growing interest among undergraduates.

“If you go to any major seed company, you’ll find people in the very top leadership positions who were students here in our plant-breeding program,” says Irwin Goldman PhD’91, professor and chair of the Department of Horticulture.

Among the college’s longstanding partnerships, CALS’ relationship with the state’s potato growers is particularly strong, with generations of potato growers working alongside generations of CALS scientists. The Wisconsin Potato and Vegetable Growers Association (WPVGA), the commodity group that supports the industry, spends more than $300,000 on CALS-led research each year, and the group helped fund the professorship that brought Jeff Endelman, a national leader in statistical genetics, to campus in 2013 to lead the university’s potato-breeding program.

“Research is the watchword of the Wisconsin potato and vegetable industry,” says Tamas Houlihan, executive director of the WPVGA. “We enjoy a strong partnership with CALS researchers in an ongoing effort to solve problems and improve crops, all with the goal of enhancing the economic vitality of Wisconsin farmers.”

Over the decades, multi-disciplinary teams of CALS experts have coalesced around certain crops, including potato, pooling their expertise.

“Once you get this kind of core group working, it allows you to do really high-impact work,” notes Patty McManus, professor and chair of the Department of Plant Pathology and a UW–Extension fruit crops specialist.

CALS’ prowess in potato, for instance, helped the college land a five-year, $7.6 million grant from the U.S. Department of Agriculture to help reduce levels of acrylamide, a potential carcinogen, in French fries and potato chips. The multistate project involves plant breeders developing new lines of potato that contain lower amounts of reducing sugars (glucose and fructose) and asparagine, which combine to form acrylamide when potatoes are fried. More than a handful of conventionally bred, low-acrylamide potato varieties are expected to be ready for commercial evaluations within a couple of growing seasons.

“It’s a national effort,” says project manager Paul Bethke, associate professor of horticulture and USDA-ARS plant physiologist. “And by its nature, there’s a lot of cross-talk between the scientists and the industry.”

Working with industry and other partners, CALS researchers are responding to other emerging trends, including the growing interest in sustainable agricultural systems.

“Maybe 50 years ago, people focused solely on yield, but that’s not the way people think anymore. Our crop production people cannot just think about crop production, they have to think about agroecology, about sustainability,” notes Tracy. “Every faculty member doing production research in the agronomy department, I believe, has done some kind of organic research at one time or another.”

Embracing this new focus, over the past two years CALS has hired two new assistant professors—Erin Silva, in plant pathology, who has responsibilities in organic agriculture, and Julie Dawson, in horticulture, who specializes in urban and regional food systems.

“We still have strong partnerships with the commodity groups, the cranberries, the potatoes, but we’ve also started serving a new clientele—the people in urban agriculture and organics that weren’t on the scene for us 30 years ago,” says Goldman. “So we have a lot of longtime partners, and then some new ones, too.”

Working alongside their applied colleagues, the college’s basic plant scientists have engaged in parallel efforts to reveal fundamental truths about plant biology—truths that often underpin future advances on the applied side of things.

For example, a team led by Aurélie Rakotondrafara, an assistant professor of plant pathology, recently found a genetic element—a stretch of genetic code—in an RNA-based plant virus that has a very useful property. The element, known as an internal ribosome entry site, or IRES, functions like a “landing pad” for the type of cellular machine that turns genes—once they’ve been encoded in RNA—into proteins. (A Biology 101 refresher: DNA—>RNA—>Protein.)

This viral element, when harnessed as a tool of biotechnology, has the power to transform the way scientists do their work, allowing them to bypass a longstanding roadblock faced by plant researchers.

“Under the traditional mechanism of translation, one RNA codes for one protein,” explains Rakotondrafara. “With this IRES, however, we will be able to express several proteins at once from the same RNA.”

Rakotondrafara’s discovery, which won an Innovation Award from the Wisconsin Alumni Research Foundation (WARF) this past fall and is in the process of being patented, opens new doors for basic researchers, and it could also be a boon for biotech companies that want to produce biopharmaceuticals, including multicomponent drug cocktails, from plants.

Already, Rakotondrafara is working with Madison-based PhylloTech LLC to see if her new IRES can improve the company’s tobacco plant-based biofarming system.

“The idea is to produce the proteins we need from plants,” says Jennifer Gottwald, a technology officer at WARF. “There hasn’t been a good way to do this before, and Rakotondrafara’s discovery could actually get this over the hump and make it work.”

While Rakotondrafara is a basic scientist whose research happened to yield a powerful application, CALS has a growing number of scientists—including those involved in the corn phenotyping project—who are working at the exciting new interface where basic and applied research overlap. This new space, created through the mind-boggling advances in genomics, informatics and computation made in recent years, is home to an emerging scientific field where genetic information and other forms of “big data” will soon be used to guide in-the-field plant-breeding efforts.

Sequencing the genome of an organism, for instance, “is almost trivial in both cost and difficulty now,” notes agronomy’s Bill Tracy. But a genome—or even a set of 1,000 genomes—is only so helpful.

What plant scientists and farmers want is the ability to link the genetic information inside different corn varieties—that is, the activity of specific genes inside various corn plants—to particular plant traits observed in the greenhouse or the field. The work of chronicling these traits, known as phenotyping, is complex because plants behave differently in different environments—for instance, growing taller in some regions and shorter in others.

“That’s one of the things that the de Leon and Kaeppler labs are now moving their focus to—massive phenotyping. They’ve been doing it for a while, but they’re really ramping up now,” says Tracy, referring to agronomy faculty members Natalia de Leon MS’00 PhD’02 and Shawn Kaeppler.

After receiving a large grant from the Great Lakes Bioenergy Research Center in 2007, de Leon and Kaeppler decided to integrate their two research programs. They haven’t looked back. With de Leon’s more applied background in plant breeding and field evaluation, plus quantitative genetics, and with Kaeppler’s more basic corn genetics expertise, the two complement each other well. The duo have had great success securing funding for their various projects from agencies including the National Science Foundation, the U.S. Department of Agriculture and the U.S. Department of Energy.

“A lot of our focus has been on biofuel traits, but we measure other types of economically valuable traits as well, such as yield, drought tolerance, cold tolerance and others,” says Kaeppler. Part of the work involves collaborating with bioinformatics experts to develop advanced imaging technologies to quantify plant traits, projects that can involve assessing hundreds of plants at a time using tools such as lasers, drone-mounted cameras and hyperspectral cameras.

This work requires a lot of space to grow and evaluate plants, including greenhouse space with reliable climate control in which scientists can precisely measure the effects of environmental conditions on plant growth. That space, however, is in short supply on campus.

“A number of our researchers have multimillion-dollar grants that require thousands of plants to be grown, and we don’t always have the capacity for it,” says Goldman.

That’s because the Walnut Street Greenhouses, the main research greenhouses on campus, are already packed to the gills with potato plants, corn plants, cranberries, cucumbers, beans, alfalfa and dozens of other plant types. At any given moment, the facility has around 120 research projects under way, led by 50 or so different faculty members from across campus.

Another bottleneck is that half of the greenhouse space at Walnut Street is old and sorely outdated. The facility’s newer greenhouses, built in 2005, feature automated climate control, with overlapping systems of fans, vents, air conditioners and heaters that help maintain a pre-set temperature. The older houses, constructed of single-pane glass, date back to the early 1960s and present a number of challenges to run and maintain. Some don’t even have air conditioning—the existing electrical system can’t handle it. Temperatures in those houses can spike to more than 100 degrees during the summer.

“Most researchers need to keep their plants under fairly specific and constant conditions,” notes horticultural technician Deena Patterson. “So the new section greenhouse space is in much higher demand, as it provides the reliability that good research requires.”

To help ameliorate the situation, the college is gearing up to demolish the old structures and expand the newer structure, adding five more wings of greenhouse rooms, just slightly north of the current location—out from under the shadow of the cooling tower of the West Campus Co-Generation Facility power plant, which went online in 2005. The project, which will be funded through a combination of state and private money, is one of the university’s top building priorities.

Fortunately, despite the existing limitations, the college’s plant sciences research enterprise continues apace. Kaeppler and de Leon, for example, are involved in an exciting phenotyping project known as Genomes to Fields, which is being championed by corn grower groups around the nation. These same groups helped jump-start an earlier federal effort to sequence the genomes of many important plants, including corn.

“Now they’re pushing for the next step, which is taking that sequence and turning it into products,” says Kaeppler. “They are providing initial funding to try to grow Genomes to Fields into a big, federally funded initiative, similar to the sequencing project.”

It’s a massive undertaking. Over 1,000 different varieties of corn are being grown and evaluated in 22 environments across 13 states and one Canadian province. Scientists from more than a dozen institutions are involved, gathering traditional information about yield, plant height and flowering times, as well as more complex phenotypic information generated through advanced imaging technologies. To this mountain of data, they add each corn plant’s unique genetic sequence.

“You take all of this data and just run millions and billions of associations for all of these different traits and genotypes,” says de Leon, who is a co-principal investigator on the project. “Then you start needing supercomputers.”

Once all of the dots are connected—when scientists understand how each individual gene impacts plant growth under various environmental conditions—the process of plant breeding will enter a new sphere.

“The idea is that instead of having to wait for a corn plant to grow for five months to measure a certain trait out in the field, we can now take DNA from the leaves of little corn seedlings, genotype them and make decisions within a couple of weeks regarding which ones to advance and which to discard,” says de Leon. “The challenge now is how to be able to make those types of predictions across many environments, including some that we have never measured before.”

To get to that point, notes de Leon, a lot more phenotypic information still needs to be collected—including hundreds and perhaps thousands more images of corn ears and cobs taken using flatbed scanners.

“Our enhanced understanding of how all of these traits are genetically controlled under variable environmental conditions allows us to continue to increase the efficiency of plant improvement to help meet the feed, food and fiber needs of the world’s growing population,” she says.

Sidebar:

The Bigger Picture

Crop breeders aren’t the only scientists doing large-scale phenotyping work. Ecologists, too, are increasingly using that approach to identify the genetic factors that impact the lives of plants, as well as shape the effects of plants on their natural surroundings.

“Scientists are starting to look at how particular genes in dominant organisms in an environment—often trees—eventually shape how the ecosystem functions,” says entomology professor Rick Lindroth, who also serves as CALS’ associate dean for research. “Certain key genes are driving many fantastically interesting and important community- and ecosystem-level interactions.”

How can tree genes have such broad impacts? Scientists are discovering that the answer, in many cases, lies in plant chemistry.
“A tree’s chemical composition, which is largely determined by its genes, affects the community of insects that live on it, and also the birds that visit to eat the insects,” explains Lindroth. “Similarly, chemicals in a tree’s leaves affect the quality of the leaf litter on the ground below it, impacting nutrient cycling and nitrogen availability in nearby soils.”

A number of years ago Lindroth’s team embarked on a long-term “genes-to-ecosystems” project (as these kinds of studies are called) involving aspen trees. They scoured the Wisconsin landscape, collecting root samples from 500 different aspens. From each sample, they propagated three or four baby trees, and then in 2010 planted all 1,800 saplings in a so-called “common garden” at the CALS-based Arlington Agricultural Research Station.

“The way a common garden works is, you put many genetic strains of a single species in a similar environment. If phenotypic differences are expressed within the group, then the likelihood is that those differences are due to their genetics, not the environment,” explains Lindroth.

Now that the trees have had some time to grow, Lindroth’s team has started gathering data about each tree—information such as bud break, bud set, tree size, leaf shape, leaf chemistry, numbers and types of bugs on the trees, and more.

Lindroth and his partners will soon have access to the genetic sequence of all 500 aspen genetic types. Graduate student Hilary Bultman and postdoctoral researcher Jennifer Riehl will do the advanced statistical analysis involved—number crunching that will reveal which genes underlie the phenotypic differences they see.

In this and in other projects, Lindroth has called upon the expertise of colleagues across campus, developing strategic collaborations as needed. That’s easy to do at UW–Madison, notes Lindroth, where there are world-class plant scientists working across the full spectrum of the natural resources field—from tree physiology to carbon cycling to climate change.

“That’s the beauty of being at a place like Wisconsin,” Lindroth says.

Want to help? The college welcomes your gift toward modernizing the Walnut Street Greenhouses. To donate, please visit: supportuw.org/giveto/WalnutGreenhouse. We thank you for your contribution.
Continue reading

Unpuzzling Diabetes

The body makes it seem so simple.

You take a bite of supper, and the black-box machinery of metabolism hums into life, transforming food into fuel and building materials. It’s the most primal biology: Every living thing must find energy, and must regulate its consumption.

But for an alarming and ever-increasing number of people, the machinery breaks down. The diagnosis? Diabetes.

Alan Attie, a CALS professor of biochemistry, has been peering into the black box for two decades now, trying to identify the pathways in our bodies by which the disease is formed. “You can’t find a better excuse to study metabolic processes than diabetes,” he says. “It’s very, very rich.”

Type 2 diabetes, caused by an inability to produce enough insulin to keep the body’s blood glucose at normal levels, is a global health crisis that has accelerated at a frightening speed over the last 20 years—roughly the same time Attie has been studying it.

It’s an enormously complex disease driven by both genetics and the environment. A DNA glitch here, an external variable there, and the body slides irretrievably out of balance. But only sometimes. Most people who develop type 2 diabetes are obese, yet most people who are obese don’t actually wind up diabetic.

Tracking this riddle has led Attie and his lab to several major discoveries, chief among them identifying two genes associated with diabetes: Sorcs1 and Tomosyn-2. Through years of elaborate experimentation, Attie and his team teased them from the genetic haystack and then relentlessly deciphered their role in metabolic malfunction.

Science has uncovered more than 140 genes that play a role in diabetes, yet genetic screening still has little value for patients. As with any part of a large and complicated puzzle, it’s hard to see precisely how Sorcs1 and Tomosyn-2 fit in until we have more pieces. The biology of diabetes is so complex that we can’t be certain what the discoveries may ultimately mean. But both genes have shed light on critical stages in metabolism and offer intriguing targets for potential drugs.

Attie need not look far to replenish his motivation. His own mother suffers from diabetes, and she used to quiz him weekly about when he would cure her. “The painful answer is that translation of basic research into cures takes a long time,” Attie once told the American Diabetes Association. “The most important clues that can lead to cures do not necessarily come from targeted research or research initially thought to be relevant to the disease.”

Alan Attie grew up an expatriate in Venezuela, where his father, Solomon, originally from Brooklyn, New York, ran a textile factory (Attie’s mother had family in South America). Poverty and then World War II had kept Solomon from traditional schooling, but he managed to put himself through high school at night, and he nurtured a deep passion for literature, poetry, history and politics. At home he ran the family dinner table like a college seminar. “Our evening meal was like a 20-year course,” recalls Attie. “It was the most stimulating part of our day growing up. I was reading Shakespeare with my father and my siblings when I was 10 years old.”

Still, Attie wasn’t quite prepared for the academic rigor of UW–Madison when he arrived in 1972. He’d never had to work particularly hard in high school and was shocked by how much time and effort college required. His grades were poor and his introduction to chemistry lackluster.

But the BioCore curriculum—an intercollege program focusing on doing science, not memorizing facts—turned Attie’s natural inquisitiveness and enthusiasm toward science. During a cell biology course where his lab reports had to be written like journal articles, Attie decided he really wanted to be a biologist. Following graduate school at the University of California, San Diego, he found himself back at UW– Madison as a young assistant professor. Ten years had passed since his freshman matriculation.

Attie’s first research focus was cholesterol metabolism, but his curiosity led him elsewhere. Until 2001 he held a joint appointment with the School of Veterinary Medicine, where he taught an introductory class in biochemistry. While preparing for the class he read broadly in metabolism and found himself continually drawn toward the quandary of diabetes.

Increasingly he found himself suffering from “discovery envy,” he says. “And then I finally decided one day I do want it to be me.” Midcareer course changes are never easy, but Attie plotted a careful transition that gained momentum with hard work and good fortune.

In 1992 Dennis McGarry, a prominent diabetes scholar, published a provocative thought experiment in Science. It had been observed for centuries that diabetics had sweet urine, and one of the earliest researchers in the disease, Oskar Minkowski, had surmised that diabetes was therefore a dysfunction of sugar metabolism. McGarry speculated that if Minkowski had had no sense of taste and had relied instead on the smell of a diabetic’s urine, he would have smelled ketone bodies, a hallmark of lipid metabolism. Might he have concluded instead that diabetes was a defect in lipid metabolism?

Soon afterward, McGarry and Attie wound up at the same research symposium in Edmonton and shared breakfast every morning. “I’m really interested in diabetes,” said Attie. “Is there room for someone like me who has been working on lipid metabolism for 20 years?” McGarry encouraged Attie, a pep talk that gave him confidence that maybe he wasn’t committing career suicide.

Gradually Attie’s new focus gathered steam. When another UW diabetes researcher left for Washington state, Attie was able to bring on researcher Mary Rabaglia from that lab. She was highly skilled in the lab manipulation of pancreatic islets, the home of the beta cells that produce insulin. Her arrival jump-started Attie’s efforts. “It was an unbelievable stroke of luck because she brought all that expertise,” says Attie.

Attie also felt he needed a new analytical toolbox, and he saw real potential in using mouse genetics to study diabetes. With one small problem: He didn’t know any genetics. So he went to the Jackson Laboratory in Bar Harbor, Maine—a global center of mouse research—and took a mouse genetics course (which he now teaches there).

The learning soon paid off. Gene chip technology was just becoming available, and industry pioneer Affymetrix was looking to commercialize the expensive technology. The company was interested in funding labs to demonstrate that the power was worth the price. Attie proposed looking at how genes were turned on and off in the fat-storing cells of diabetic mice, and Affymetrix approved the project.

Exploring gene expression—which genes get turned on and off—was an important first clue in figuring out which genes might contribute to diabetes. With thousands of proteins and a still unknown quantity of genes in play, diabetes is vexingly elaborate. Gene chip technology brought previously unimaginable power to the equation. “The reason for doing genetics is we can’t imagine the complexity of these processes,” Attie explains. “We really do need the serendipity of genetics to find our way.”

Attie sent Sam Nadler, a new M.D./ Ph.D. candidate, off to Maryland and California for training. It was an ambitious project, and the old analytical tools broke under the mountain of new data. Enlisting the help of Brian Yandell, a CALS professor of horticulture with a joint appointment in statistics, they were able to interpret their data.

In late 2000 the team published the first paper on genome expression changes in diabetes using gene chip technology. It was premature to get too excited—they were, in effect, translating a book of unknown length, and had only finished the first of many chapters.

But it was an important demonstration of the power of their new tools. And Attie and his lab were now a known quantity in the world of diabetes research, and part of the conversation.

Attie’s team could now assess any DNA they got their hands on, but there was still too much static hiding the working genes. Only by basing his experiments on other, more tangible clues could Attie find anything useful.

He decided to tackle the obesity link. “Most people who have diabetes are obese, but most people who are obese don’t have diabetes,” he notes. To get at the problem, Attie’s team took two strains of lab mice: a standard control strain known as “black 6” (B6) and a diabetic strain (BTBR) that, when the mice became obese, were diabetic. The team intercrossed the two strains for two generations, testing the second generation of mice for diabetes. Offspring were strategically bred to enable the lab to pinpoint the genes responsible for diabetes susceptibility.

The collaboration that had begun with Brian Yandell now expanded to include Christina Kendziorski, a professor of biostatistics with the School of Medicine and Public Health. Teasing conclusions from large data sets was an exciting new field, and the team saw real potential for developing new techniques— and they had the statistics grad students to do it. Some even took up residence in Attie’s lab to be closer to the puzzles cascading from each successive experiment. It was like game after game of Clue, only with a half million possible rooms, a half million possible murder weapons, and a half million possible suspects. And as many homicides as you wanted to look for. Some computations took days.

Ultimately they were looking for genes, but what they found at first were just general target zones, located on chromosomes 16 and 19. That was a big first step, but chromosomes are constructed of many millions of base pairs—the building blocks of DNA . Considered relatively small, chromosome 19 still runs to about 61 million base pairs. The first round of sifting reduced the search zone to a neighborhood with only 7 million base pairs, an almost 90 percent narrowing of the field.

Pinpointing the gene required a constant shuffling of the genetic deck, counting on the random nature of sexual reproduction to winnow away the chaff, revealing the kernel of the gene. It’s a process that can take years, measured in mouse generations. Finally, in 2006, they were able to pinpoint the precise location of Sorcs1. It was a triumph, but it also set the stage for heartbreak.

Meanwhile, other projects kept rolling. Sushant Bhatnagar, a postdoctoral scholar in biochemistry, was working on the other target zone—chromosome 16. In 2011 he zeroed in on Tomosyn. “It was crazy,” he says of the work needed to sift through so many mouse generations.

But in the end they discovered that Tomosyn-2 played a critical role in diabetes. Tomosyn was also more willing to give up its secrets. Most of the myriad proteins in a beta cell are positive regulators, which means they facilitate flipping the insulin switch to “on.” Tomosyn is an off switch—one of very few known to exist.

Though mouse and human diabetes are different, the lab confirmed that the human version of Tomosyn plays a similar role. Now the challenge is using the clue to develop a targeted therapy. “Loss of insulin secretion leads directly to diabetes,” Bhatnagar explains. “If you can fix insulin secretion you can fix the majority of diabetes.”

Finding Sorcs1 had been difficult enough, but unlocking how it worked would prove devilishly complex. Two students tried and failed, and eventually left research altogether, demoralized by the dead ends. Attie felt terrible. “I always feel responsible for everything that goes on in the lab,” he says.

Then, in 2012, Attie welcomed a new postdoctoral scholar. The only problem was that Sorcs1 was a beta cell problem, and Melkam Kebede did not come to Madison to work on beta cells.

A child prodigy from Ethiopia by way of Australia, Kebede was through college by age 18 and had her Ph.D. at 23. After spending most of her career on beta cells, she was looking for something  different in her second postdoctoral position. Able to go almost anywhere, she chose Madison, and Attie.

“Of all the places I interviewed, Alan was the most passionate about teaching,” Kebede says. And she liked the way he encouraged people. She’d always been told that she was exceeding expectations, and nobody challenged her during interviews. Except for Attie. “I wanted someone to push me more, so I can do more than what I’ve been doing,” she says.

Pushing people, of course, is a delicate process, and easily fumbled. Attie instead seems to pull with a magnanimous curiosity. And with Kebede he was patient but persistent. Attie would keep asking: Why were the Sorcs mice diabetic? “You still have the parents of these mice waiting in the hallway at the hospital,” he would say. “They are buying so many coffees. You’ve got to come up with a reason why they are diabetic.”

Finally, Kebede couldn’t resist the puzzle—the opportunity to find the link between obesity and diabetes. While the lab hadn’t cracked Sorcs, they had narrowed the focus. And Angie Oler, an invaluable technician with 20 years of experience, would help her get the end game rolling.

In an obese person, cells do not respond completely to normal insulin levels—this is called insulin resistance. To compensate, the body typically produces more insulin. Type 2 diabetes develops when the insulin resistance outpaces the body’s attempt to make more. Sorcs seemed to play a role, but how?

“There are so many things in the body that contribute to controlling glucose levels in the blood,” Kebede explains. A beta cell has to sense an increase in glucose and secrete insulin, which then triggers other reactions that lead, ultimately, to glucose being removed from the blood and absorbed by the cells that need it. Sorcs1 could work anywhere in this great game of cellular call and response.

Despite all of the genetic and biochemical tools at Kebede’s disposal, it was ultimately a simple observation in a microscope that yielded the key. Insulin is manufactured in advance and stored by beta cells in the pancreas, then released as needed. Typically only 1 to 4 percent of the insulin is released at any one time, and a healthy beta cell would simply reload and release more insulin as needed. Examining hundreds upon thousands of cells, Kebede realized that the diabetic beta cells were partly emptied of insulin—but not enough to reveal an insulin secretory dysfunction.

The problem was that a standard lab testing for insulin production was a one-shot deal. The Sorcs1-deficient cells could handle that first test, but not a second test. Finally she understood: The diabetes was caused not by a lack of insulin, but by a failure to reload in a timely way.

The team had the answer—but after their first submission to the prestigious Journal of Clinical Investigations, they were asked to do 22 more experiments.

Kebede had been thinking along the same lines and had already begun the additional work. “We wanted to make sure we got the story right,” she says.

It took an extra eight months, but in August 2014 the paper was finally released. It was an exciting and novel find. In type 2 diabetes, it often seems as if the insulin-producing pancreatic beta cells are wearing down. The Sorcs1 discovery suggests a possible explanation for that, and also provides an important change in how to work with beta cells.

Around the same time, a related discovery came from, of all things, a single-celled organism called Tetrahymena thermophila being studied at the University of Chicago. Attie and Kebede went down to brainstorm with Aaron Turkewitz, a professor of molecular genetics and cell biology. It was an inside-baseball connection, the kind that might take pages to explain and doesn’t show up in grants or co-authored papers. But it personifies the role of a researcher like Attie in an endeavor as complex as decoding diabetes.

“His interests at the most basic scientific level have immense medical implications, and in that way, he connects to a large swath of investigators,” explains Peter Arvan, M.D., Ph.D., director of the University of Michigan Comprehensive Diabetes Center. “There are few like him, but he is a model investigator for the 21st century. As the science gets more complex, the field needs investigators like Alan to connect us.”

Once upon a time, Alan Attie had a bumper sticker that said, “Don’t believe everything you think.”

And Attie thinks about so many things. He makes very good wine and is an accomplished amateur photographer. As much as he loves research, he’s passionate about teaching. Conversations glide from the unification of Germany and money in politics, to Ebola and science funding, to income inequality and student debt.

Attie’s not the happiest of scientists right now. As the United States has reduced its lead in science funding, he’s become acutely aware that the kind of midcareer leap he made into diabetes would be impossible in today’s funding environment. He’s got fewer mice in inventory than at any time in recent memory—and to him that means discovery is languishing.

“We can’t pursue all of our good ideas. We can’t pursue all of our bad ideas, either. But we don’t know which ideas are good or bad until we try. The thing is, we’re not trying as much,” he concludes, frustrated. He worries that we’re losing our edge.

For example, he has a lead on a protein that appears to be involved in both Alzheimer’s and diabetes—perhaps the two greatest challenges to health care financing. “I won’t write the grant because it has zero chance of receiving funding,” Attie says. I

In an age where science seems so often a political pawn, it’s refreshing to hear it talked about as a human ideal.

In Attie’s vision, scientific thinking isn’t just running the numbers and picking the ones you like. It’s about “being self-critical, being introspective about how you think and what algorithm you’re using to arrive at a conclusion about anything in the world,” says Attie. “If that were a widespread value, I think our society would be different, better. We would have less hatred, less racism. We would be more nuanced in the way we judge other people.”

Meanwhile, there are mice to study and students to train. Attie’s been involved in the Collaborative Cross, a massive multi-institutional effort to refine mouse genetics to better allow the study of human disease. Using new mice strains, his team is beginning a major fishing expedition, a multiyear project focusing on insulin secretion and beta cell biology in general—utilizing brand new genetic techniques that already are being hailed as game-changing.

Attie knows there will likely be moments of eureka as well as dead-end heartbreak. The team that he loves so much will grow and change as members adapt to the shifting landscape of discovery. He’ll miss the old students and technicians as they move on, but he’ll gain new students and collaborators as he keeps asking the questions that come so naturally to him.

“Being in science is very humbling because I’ve been wrong about a lot of things over time,” says Attie. “That’s part of learning to be a scientist—and yet I think it’s also part of learning to become a better human being.”

Five things everyone should know about … Stevia

  1. It’s not just a sweetener. The plant genus Stevia includes more than 200 species of herbs and shrubs native to South America and mexico. Yet only two species, Stevia rebaudiana and Stevia phlebophylla, produce steviol glycosides in their leaves. These glycosides are the source of the plant’s sweet compounds.
  2. But as a sweetener, it’s nothing new. Stevia rebaudiana has been used for more than 1,500 years by various indigenous peoples in South America both to treat diabetes, obesity and hypertension and to provide a sweetening effect for food and drink. Commercial use of stevia took off when sweeteners such as cyclamate and saccharin were identified as possible carcinogens. Japan became the first country to introduce commercial use of stevia in the early 1970s and still consumes more of it than any other nation. Stevia has been available for several decades in natural food stores but in recent years has increased greatly in popularity as a sweetener for processed foods. Today, stevia can be found in many u.S. supermarkets under a variety of brand names, such as Truvia and PureVia.
  3. Why use stevia instead of sugar or other sweeteners? Stevia is significantly sweeter than table sugar, and comparable in sweetness to products such as aspartame, saccharin and sucralose, but it is metabolized differently. Stevia is perceived as sweet but does not cause a rise in blood glucose like sugar, making it a promising food for diabetics. It is a natural rather than an artificial sweetener.
  4. How is stevia processed within the body? The glycosides in stevia are primarily known as rebaudioside (or rebiana) and stevioside. They have some bitterness associated with them and can be blended with other compounds to minimize this effect. Once consumed, the glycosides break down into steviol, which is simply excreted; and glucose, which is used by intestinal bacteria and does not go into the bloodstream. So eating foods sweetened with stevia means a sweet taste without added calories.
  5. Can I grow stevia in Wisconsin? Stevia plants are not adapted to cold conditions but may be grown as annual plants in temperate regions (including in Wisconsin). However, growing plants from seed as an annual crop generally does not result in satisfactory results. Stem cuttings from mature stevia plants may be rooted and used to propagate stevia for growth in spring and summer.

Irwin Goldman is a professor and chair of the Department of Horticulture.

Upping the Orange

Sherry Tanumihardjo is a CALS professor of nutritional sciences and director of the Undergraduate Certificate in Global Health, a popular new program that draws participants from majors all across campus. She has almost three decades of experience working with vitamin A, and her research team has conducted studies in the United States, Indonesia, South Africa, Ghana, Burkina Faso and Zambia. Tanumihardjo has acted as a consultant to many studies throughout the world to assist with study design and appropriate standardization. She is a strong advocate for the promotion of nutritionally enhanced staple foods, vegetables and fruits to enhance overall health and well-being.

Describe your work with orange vegetables.
I have worked for a number of years on carrots of many colors as well as on orange-flesh sweet potato and, more recently, orange maize. Basically we are trying to improve the vitamin A status of individuals by having them consume more orange fruits and vegetables in general.

Can you give us an idea of how you go about doing that?
For many years I have worked with carrot breeder Phil Simon in the Department of Horticulture. He was breeding carrots for more orange color. We did a series of studies in both an animal model and in humans, trying to look at the uptake and distribution of the carotenoids that give the vegetables their orange color—and the vitamin A that is made from the carotenoids. Then we moved on to orange vegetables in humans in Africa. I have worked with orange-flesh sweet potato in South Africa and with orange maize in Zambia.

Can you describe the connection between the color and the nutritional value?
There are three well-known precursors of vitamin A that are called pro-vitamin A carotenoids. Those are beta-cryptoxanthin, alpha-carotene and beta-carotene. Many of you may have heard of beta-carotene because it is one of the compounds found in many over-the-counter supplements. But those are also the compounds that give carrots and orange maize their bright orange color.

What happens if there is not enough vitamin A in the diet?
The most drastic thing that can happen is death. So we go around trying to get people to improve their vitamin A intake not only to prevent death—there are many steps before that happens, and one of them is blindness. Vitamin A is extremely important in vision and it also helps us ward off disease, so it’s a very important vitamin.

How did you get started in Africa?
It actually started very slowly. I used to be a consultant and I would fly back and forth to different countries to help them look at study design. The sweet potato study was funded by the International Potato Center. I helped them design the study, they did the school implementation—a feeding study—and then I helped them get the work published. My work with orange maize started in 2004 in collaboration with HarvestPlus, a project managed by the International Food Policy Research Institute. We started working with animal models and then progressed to full-fledged feeding trials, the latest of which we finished in 2012.

What were some of the challenges in your work in Africa?
The challenge is that feeding trials, if they’re going to show what we call efficacy, have to be highly controlled. So that means you have to keep the children for long periods of time and feed them all of the foods—and the foods need to be the same across the group except your test food. So in South Africa we fed orange-flesh sweet potato to half the children and white-flesh sweet potato to the other half. And then when we moved on to orange maize we did two studies. One study was similar to the sweet potato study where we fed white maize and orange maize. And then we did a second study where we had three groups, which got a little more complicated. We had white maize, orange maize and then white maize with a vitamin A supplement.

Another challenge is that all of the human work that I do involves blood—so we have to take blood from these children. Vitamin A in the human body is stored in the liver, and we use indirect markers of liver reserves of vitamin A that you can pick up from the blood.

Looking down the road what kind of goals do you have for your research?
We would like for people to have optimal health by having a diet that has not only all the nutrients you need but also some of the potential compounds that gear us toward optimal health. So it’s not just about fighting blindness anymore, but to see if we can get people into a new nutritional state where they are actually able to ward off diseases such as cancer.

What kind of progress have you made?
We have had significant progress with sweet potato. Most people in Africa used to eat white sweet potato, not the orange sweet potato we eat here in the United States. Many countries in Africa have now adapted the vines to be orange-flesh sweet potatoes. We think that’s a success story. Regarding orange maize, there are three lines of orange maize that have been released by the Zambian government. Currently orange maize is available to consumers. Right now it’s at a premium price, but hopefully with time the price will come down to the level of white maize.

How did you get interested in this line of work?
It chose me. It wasn’t something that I was looking for, but I was working with vitamin A and if you’re working with vitamin A and status assessment, it’s going to draw you to the countries that may have a history of vitamin A deficiency.

Can you talk a little more about the international nutritional programming you’ve been involved in?
Most of the work that I’ve done is to support biochemical labs. We have not done a lot of nutrition education on the ground, although that is a goal of mine, especially in Zambia. We have discovered that Zambians actually have really good sources of vitamin A in their daily diets, so we want to help them continue to eat the fruits and vegetables that are good sources of those phytonutrients and vitamins and minerals.

The other thing that I work on is isotope methods, which sounds a little scary!

What are isotope methods and what do they do?
We work with a compound called 13C. Typical carbon in the human body is 12C and radioactive carbon is 14C. We are working with the form of carbon that constitutes 1 percent of the human body. It’s perfectly safe to use, but it also has allowed me to work with the International Atomic Energy Agency. That’s the same agency that oversees radioactive bombs in different countries, so it’s kind of interesting that they have something called Atoms for Peace. And they actually received the Nobel Peace Prize one year based on the safe use of isotopes in nutrition.

I have worked in several countries trying to help them understand isotope methods and to apply isotope methods at the population level to inform public health policy. It’s a very technical method, but it can answer questions of public health significance.

So it’s a research tool. And what kinds of questions does it answer?
It is the most sensitive marker of liver reserves of vitamin A. Basically what we do is we give a dose of vitamin A that has a slightly higher amount of 13C than what’s found naturally in the environment, and then we can follow the uptake and the clearance of that 13C in the human body. And from that we can calculate total body stores of vitamin A—how much is in the whole body.

To conclude here, there’s an interesting story about your office and a more recent career development of yours—serving as director of the Undergraduate Certificate in Global Health, a program you helped develop and launch in 2011.
Yes. The Nutritional Sciences Building was originally a children’s hospital, and this particular office that I sit in sat idle for many, many years, used only for small committee meetings and things like that. When we received funding for the Undergraduate Certificate in Global Health, I looked in this office again and realized that it now fits my purpose. Originally it was the viewing room for children who had died from a variety of diseases, and the parents would sit in this room and mourn their lost child. I decided that this room fit my new mantra at the university, which is to empower undergrads, to mobilize them, to try to change the world. And while I’m sure we won’t have 100 percent participation, we’ve already had about 1,000 students go through the program.

Gardening for the People

THREE YEARS AGO I was at a complete loss when it came to the grounds surrounding my home. What was I going to do with a huge yard overrun with weeds and invasive species? There wasn’t a single flowerbed, but there were two large crabapples with spotty leaves and burned-looking bark. Our fence line was populated with a tight row of buckthorn and invasive honeysuckle, and there was garlic mustard everywhere.

I learned this sad fact from an arborist we had hired to trim broken branches from the silver maple on our property. Determined to forge ahead and make something of the yard, I had him take out the diseased trees and the large buckthorn and honeysuckle bushes. After he finished, nothing remained but a few very old and overgrown lilacs, two peony plants, and a few bushes around the perimeter
of our lawn.

I was determined to turn my yard into something beautiful, but it was clear I needed help. Trial and error did little but show me how much I had to learn. As I began to investigate ways to acquire gardening expertise, people would mention advice from “master gardeners,” a title that conjured images of retired ladies in wide-brimmed hats and gloves tending gardens with lots and lots of rose bushes. I also thought of master gardener training as a kind of finishing school for skilled gardeners rather than a program that welcomed beginners.

I was wrong on both counts, as I learned from Mike Maddox MS’00, a CALS horticulture alumnus who directs the statewide Master Gardener Volunteer Program—a service of UW-Extension—from an office in the Department of Horticulture in Moore Hall. Master gardeners are, in fact, Master Gardener Volunteers—or MGVs for short—with the emphasis on “volunteer,” Maddox notes.

It’s a role that has become more salient over the years. “The volunteer requirement became a way for MGVs to assist and offset the barrage of gardening questions coming to Extension offices,” Maddox says. “We emphasize the volunteer aspect of ‘Master Gardener’ to distinguish it from a commercial endorsement, to differentiate it from a garden club—and to de-emphasize the expectation of the need to be an ‘expert’ on all subjects.”

“Open Source” Seeds for All

Scientists, farmers and sustainable food systems advocates recently celebrated the release of 29 new varieties of broccoli, celery, kale and other vegetables and grains that have something unusual in common: a new form of ownership agreement known as the Open Source Seed Pledge.

The pledge, developed through a nationwide effort called the Open Source Seed Initiative, is designed to keep the new seeds free for all people to grow, breed and share for perpetuity, with the goal of protecting the plants from patents and other restrictions.

CALS professors Irwin Goldman (horticulture) and Jack Kloppenburg (community and environmental sociology) have been leaders in the initiative, which arose in response to the decreasing availability of plant germplasm—seeds—for public plant breeders and farmer-breeders to work with.

Many of the seeds for our nation’s big crop plants—field corn and soybeans—are already restricted through patents and licenses. Increasingly this is happening to vegetable, fruit and small grain seeds.

Goldman, who breeds beets, carrots and onions, still plans to license many of his new varieties as usual through the Wisconsin Alumni Research Foundation (WARF), which has been supportive of his interest in open source seeds. But he’s pleased he now has an alternative for when he wants to share new varieties with fellow public plant breeders or small seed companies.

“These vegetables are part of our common cultural heritage, and our goal is to make sure these seeds remain in the public domain for people to use in the future,” he says.

Everyone around the table

MONICA WHITE arrived at the University of Wisconsin–Madison in 2012 as a professor of environmental justice, with a joint appointment between CALS (community and environmental sociology) and the Gaylord Nelson Institute for Environmental Studies. Previously she was a professor of sociology at Wayne State University in Detroit.

Her research engages communities of color and grassroots organizations that are involved in developing sustainable community food systems. She is working on her first book, Freedom Farmers: Agricultural Resistance and the Black Freedom Movement. Other projects include a multiyear, multimillion-dollar USDA research grant to study food security in Michigan.

You’re a fairly recent arrival at CALS and the Nelson Institute for Environmental Studies. What goals do you have for your work here?
I am really excited because it is a position that allows me to talk about how communities are responding to food insecurity, how communities are engaged in local food and urban agriculture, and I can bring that into the classroom. I also bring activists to Madison and take students to Detroit. Madison has been a very welcoming place to integrate all of those pieces of who I am as an academic, as an educator and as a researcher. So there’s a nice way that these pieces operate, and my departments are extremely excited about the work that we’re doing.

Do you have a specific project you’re focusing on?
One example is for the capstone course in the Department of Community and Environmental Sociology. I took students to Pleasant Ridge, Wisconsin, where students were able to look at a rural community that had a pre–Civil War black settlement. Students were involved in the archives and then we met with folks who live there. Unearthing the history of black farmers in the state of Wisconsin is something that I’m moving toward as we investigate the relationship between communities and agriculture and all the benefits that come from that.

Is urban agriculture something new?
I would argue not. I would say that as long as we’ve had people in cities we’ve had folks engaged in growing. My dad moved from Alabama to Detroit and he always had a garden. Often the assumption is that the northern migration meant folks were leaving behind their agricultural past. But they brought seeds with them and they brought the knowledge with them to the north— to cities like Gary, Detroit and Chicago.

And if you look back to 1894, Hazen Pingree, then mayor of Detroit, passed an urban gardening ordinance where he encouraged those who owned land to allow that land to be used by those who were unemployed. If we go back to the 1890s, we can’t argue that urban agriculture is new.

It’s just new in terms of its current incarnation. More people are looking at it as a strategy to respond to food insecurity, and knowledge and news about it are more widely available through the Internet and many other forms of media.

What’s encouraging about the movement is that people see themselves as agents intervening in the food system for their own and their community’s best interests. So, for example, I see that I have a corner store selling mostly cigarettes, tobacco, alcohol and lottery tickets. And I see vacant land. And instead of saying, “Hey, give us a grocery store,” people are using the land to grow food in response to food insecurity. I think that part of it—the intentional political engagement in growing food as a way to respond to neglect on the market side—is probably a way people haven’t thought about urban agriculture before.

Class Act: The Big Picture on Food

She’s picked vegetables on West Coast farms, worked to improve health, education and housing in immigrant communities on the Texas-Mexico border and, most recently, spent a semester in Peru, where she attended Pontificia University and worked with a non-governmental organization on food security.

As a double major in agricultural economics and Latin American studies—with an academic record that led to a recent Outstanding Sophomore Award from the Wisconsin Agricultural and Life Sciences Alumni Association—Patricia Paskov is trying to get the big picture on food.

It all started with a little story. “My grandfather, an immigrant from a tiny island in Croatia, claims to have survived the earliest years of his childhood on the milk of one goat,” says Paskov. “I, on the other hand, grew up in suburbia and probably spent most of my childhood believing that food grew on grocery store shelves.”

As a young adult, Paskov resolved to learn more about where food comes from. A “three-week, no-frills farm experience” in California, as she describes it, gave a new focus to her life. “I began to understand that food is an undeniable social, economic and political force,” Paskov says.

Her interest in food policy grew during an internship with the Oakland-based nonprofit Food First, which conducts global work on food systems and is located near a part of the city that at the time had 30,000 residents but no grocery stores. “It’s almost as if this reality has prompted the community to take some of the most progressive steps forward in food justice,” Paskov says. “Community development programs, NGOs, and farm-to-plate programs abound in Oakland, igniting a role of agency amongst everyone.”

Paskov sees her life’s calling as helping to make the world a better place food-wise. “I see myself working in the public or third sector, contributing to international decisions regarding food, agriculture, national resources and rural development,” she says. “In the upcoming years, population growth and climate change will largely affect how the agricultural market functions—and food policy will be a more important field than ever.”

Field Notes: Potato Exchange Benefits Peruvians

In the growing region around Puno, Peru, farmers hedge their bets.

Located 12,000 feet above sea level, on the side of an Andean mountain, Puno has a growing season that’s short, cool and prone to frost. The staple food of the area is potato, and local farmers plant dozens of different varieties on their plots—some that they relish for their flavor, as well as some less palatable, frost-tolerant types.

In good years everything grows well and families have plenty to eat. In bad years—when there is an unseasonable or particularly hard frost—their preferred plants fail, and they must rely on the small, bitter potatoes produced by the hardy survivors.

Soon, however, they will have a better option. For the past two growing seasons, farmers near Puno and in three Peruvian highland villages have participated in a project to grow and test frost-tolerant versions of their favorite local varieties, with great success.

These special potato plants were developed in Wisconsin by a team of CALS plant scientists and plant breeders using germplasm stored in the U.S. Potato Genebank, located in Sturgeon Bay.

“I think this is the first case where a potato developed in the U.S. has been accepted by local farmers in these communities in the Andes,” says project coordinator Alfonso del Rio, an associate scientist in the lab of John Bamberg. As an employee of the USDA’s Agricultural Research Service, Bamberg serves as director of the U.S. Potato Genebank. He is also a professor of horticulture with CALS.

The plant materials used for the project, like the vast majority found in the U.S. Potato Genebank, were brought to the United States from the Andes, the potato’s site of origin. This makes the project a special opportunity for potato breeders in the United States to give something back.

“We’re interested in returning the benefits of our genebank to Peru and the broader Andean region because that’s the area that supplied our country with germplasm,” says Bamberg, who led the project’s breeding effort. Earlier work by CALS horticulture professor Jiwan Palta, the third member of the team, made modern marker-assisted breeding for frost tolerance possible.

To make the new potato lines, Bamberg took an exceptionally frost-tolerant wild relative of the potato family—a weed, basically—and crossed it with seven popular native Peruvian potato varieties to generate frost-tolerant versions of the native potato plants.

Although the new potato lines were originally meant to be added to Peru’s national potato breeding program as germplasm for further breeding, the farmers who were involved in the trials are eager to start growing some of them right away. And no wonder. This past growing season in Puno, after a late, hard frost, a few of the new frost-tolerant lines far outperformed the local varieties, yielding twice as many pounds of potato per plot.

The CALS team hopes these more dependable potato plants will help bolster Peru’s vulnerable rural communities.

“If the farmers could send part of their harvest to market, even 10 or 20 percent, they could have some money to invest in community development—in things like clinics, schools and libraries,” says del Rio.