Eyes on the Green

Traveling around the windswept golf course called The Straits, with its massive greens of bentgrass and rumpled, horizon-bound fairways of fescue, it’s easy to see why course manager Michael Lee BS’87 would arrange to keep his own yardwork to a minimum.

“My lawn takes me 20 minutes,” says Lee. It’s a cool spring morning, and we’re bouncing his pickup around the stunning environs of The Straits, one of two Kohler Company 18-hole courses that comprise Whistling Straits on the shores of a steely-surfaced Lake Michigan in Haven, Wisconsin.

“I have mostly mulch and woody ornamentals,” Lee says of his home lawn. “Everything I have to do for weed control I can do while I mow my lawn.”

This is in great contrast to the daunting challenge Lee faces in maintaining what has been deemed one of the country’s great championship golf courses.

And now the task has become almost herculean. The Straits, built and owned as part of The American Club by the Kohler Company, is hosting the prestigious PGA Championship this summer. From August 10 to 16, the eyes of the world will be on that course.

Though Lee will be toiling anonymously that week, guiding a staff of hundreds, his hard-earned skills as a golf course manager will be very much on display. Few, however, will truly understand what Lee and his staff do behind the scenes to maintain fairway and tee and rough and allow the television cameras to create what, in effect, is golf course art on our screens—sweeping vistas of perfectly tended dune and grass and emerald greens, with the big lake shining in the background.

But more than artful views are at stake. Lee, personable and easygoing and quick to smile, stands up well to pressure, those who know him say. And pressure there will be.

The PGA Championship, which dates back to 1916, is one of the most heralded events in golf. Each of the last two PGA Championships played at Whistling Straits, in 2004 and in 2010, drew upward of 300,000 people, and millions of households around the world tuned in to television broadcasts. The Wisconsin economy benefited to the tune of more than $76 million for each of the tournaments.

Lee is the first to say he could not shoulder the responsibilities of preparing The Straits for such worldwide scrutiny without plenty of help. And one of the places he counts on most for guidance in dealing with the course’s fussy turf is his alma mater, the College of Agricultural and Life Sciences at the University of Wisconsin–Madison—and, more specifically, the CALS-affiliated O.J. Noer Turfgrass Research and Education Facility, named for Oyvind Juul Noer, a CALS alumnus and one of the earliest internationally known turfgrass agronomists.

The facility, where scientists use tools ranging from high-powered microscopes to lawn mowers, opened in Verona, Wisconsin, in 1992 as a partnership between the Wisconsin Turfgrass Association, the University of Wisconsin Foundation, and the CALS-based Agricultural Research Stations.

Toiling in its maze of test plots, often on their hands and knees, are researchers who study everything from insects and soil to plant disease. For Lee, they are like a staff of doctors who can, at a moment’s notice, diagnose what is ailing a green or a fairway and prescribe a treatment. The Kohler Company (like many other golf course operators) contracts with the facility annually for these services.

Before and during the PGA championships, that role becomes even more crucial. The university specialists help Lee keep disease and insect problems at bay throughout the year. But in the weeks leading up to the championship they become his urgent care clinic, providing immediate help if something suspicious shows up. During the week of the championship they staff on-site, portable laboratories.

“We’re kind of at Mike’s beck and call,” says Bruce Schweiger BS’84, a CALS plant pathology researcher who serves as manager of the Turfgrass Diagnostics Lab housed at O.J. Noer. “If he calls, we’ll be there. We’re CSI Turf! That’s who we are.”

Of course, such high-profile events are just a small—albeit exciting—part of the facility’s wide-ranging mission. And you certainly don’t have to be running a world-class golf course to seek help from the scientists at O.J. Noer.

The turfgrass industry is a $1 billion-a-year business in Wisconsin and keeps about 30,000 people in jobs. Chances are, if you manage a sod farm or a park, maintain an athletic field, try to keep a 9-hole golf course at the edge of town up and running, or just wonder why your lawn looks like a bombing range, you could benefit from expert advice.

Paul Koch BS’05 MS’07 PhD’12, a CALS professor of plant pathology and a UW–Extension turf specialist who once worked as an intern for Lee, says the broad reach of the CALS turfgrass program, throughout the state and the country, is a fine example of the Wisconsin Idea at work.

“Just think of all the mom-and-pop golf courses around the state,” Koch says. “There are all these excellent little 9-hole courses. The owners have to manage their problems within the confines of the budgets they have. They really rely on our experts.”

Lee, preparing his course for the world stage, takes full advantage of the sharing of knowledge upon which the Wisconsin Idea is based. He long ago learned how important the concept is to people in all corners of the state. It was part of his education at UW–Madison, he says. Lee graduated in 1987 with a degree from CALS in soil science, specializing in turf and grounds management. He also worked as a student hourly helping conduct research in the Department of Plant Pathology.

Lee credits that education and several crucial golf course jobs—including five years as assistant superintendent at the Blue Mounds Golf and Country Club in Wauwatosa—with equipping him to handle the rigors of managing a course such as The Straits.

It was mostly his work afield at CALS that best prepared him, Lee says. He remembers long days spent crawling around test plots with a magnifying glass looking for diseases with names like dollar spot or nearly invisible insects such as chinch bugs. He literally learned his craft on the ground, he says.

“I learned the technical side of the business,” Lee says. “The need to know what’s going on at deeper and deeper levels.”

The willingness to work hard and learn has long been one of Lee’s most noticeable traits. At age 14, he went to work at the Blackhawk Country Club golf course in the Madison suburb of Shorewood Hills. His boss was Monroe Miller BS’68, now retired but for many years the respected and colorful superintendent at Blackhawk.

“He was a real special kid,” Miller says. “There were two things about Mike. He was smart and he had a great work ethic. He was probably never, ever, ever once, late for work.”

Miller recalls that off-season was always a time for catching up on chores such as painting. Around Thanksgiving in 1982, he told Lee and another young worker that among the jobs on their list was painting the inside of a pump station.

“They went down there on Thanksgiving Day and went to work,” Miller says. “I had to go down and kick them out so they would go home and spend time with their families.”

As for Lee, he says of Blackhawk and his apprenticeship with Miller: “I learned to work. I learned discipline.”

It was apparent even in those days, Miller says, that Lee had a special talent for everything to do with maintaining a golf course, from a love of the machinery to understanding the special care grass needs to become the meticulously groomed stage necessary for the game.

“Mike is one of those guys you could call a turfgrass clairvoyant,” Miller says.

Whistling Straits is a world unto itself, a haunting landscape that seems to have been dropped from the ancient countryside of the British Isles onto the Lake Michigan shoreline. That was exactly the intent of Kohler Company CEO Herbert Kohler and legendary golf course designer Pete Dye when they created both The Straits and The Irish, the other 18-hole course on the property.

The Straits, especially, evokes the rugged environs of renowned seaside courses such as the Old Course at St. Andrews in Scotland, frequent site of the British Open. These are known in the golfing world as links courses, dramatically different from the grassy, intensely manicured courses most Americans are familiar with. Greens are connected less by fairways than by long reaches of rugged, seemingly unkempt terrain pocked by deep, cylindrical bunkers known as pot bunkers. These are another naturally occurring feature of the old courses, terrifying hazards into which unlucky golfers can disappear for long moments before chopping their wayward ball out again.

The old links courses in Ireland, Scotland and England are characterized by a coastal topography of dune and scrub-covered ridges. They evolved as the setting for a terribly frustrating game called golf because they were good for little else other than grazing the sheep that chomped away while early golfers swung away.

Though some may associate the word “links” with linked golf holes, the word actually comes from Old English and predates the game. It is the name given to that particular harsh and scrubby landscape behind a beach.

This is the world that Dye wanted to create with The Straits. He started with a wasteland along the shore of Lake Michigan, a flat and dismal area that had been the site of a military antiaircraft training range. He ordered up 7,000 truckloads of sand and went to work.
What emerged was a course of bluff and dune along two miles of Lake Michigan shoreline with holes named Gremlin’s Ear and Snake and Cliff Hanger and Widow’s Watch and Pinched Nerve. Each hole has a view of the lake. There are four stone bridges and a stone clubhouse that looks as though it were transported rock by rock from the Scottish countryside. A flock of Scottish blackface sheep roam the grounds.

“We had to hire a shepherd,” Lee says. “Sometimes one of the sheep gets lost and we all have to look for it. You can spend hours out there looking for that one last sheep. It’s like something straight out of the Bible.”

But few characteristics connect The Straits to the old-style links courses more strongly than the wind. Lee, traveling the course, seemed almost always aware of the wind off the big lake.

“Out of the north today,” he says, during our drive. “Look at those waves.”

The wind gave the course its name. Herbert Kohler was walking the property during construction and, apparently teetering in a steady gale that whistled along the course’s heights and raised whitecaps on the lake, the name came to him very naturally.

The attention to detail in the course’s design, construction and maintenance has impressed the world’s best golfers. Lee keeps a file of comments from professional golfers, and he pulled out one from Tom Lehman, three-time winner of the PGA’s Player of the Year, who was interviewed about the course during the 2004 PGA Championship.

“It’s quite a feat of construction,” Lehman said. “I mean, it’s quite a vision they had . . . This golf course is almost otherworldly.”
Lehman also spoke of the course’s ruggedness. Players and spectators alike generally come off The Straits exhausted, Lee notes. During the 2010 championship he spent part of his time giving rides to exhausted spectators worn out by walking the up-and-down course.

Lee enjoys banging around the course in his truck, sharing its charms and its quirks, especially now as preparations for this summer’s championship are well under way. On one jaunt he points out the paths that are designed like narrow country lanes (no carts here; every golfer walks with a caddy). He pauses at the large staging areas for gravel and sand that will serve as platforms for the big corporate suites and viewing stands.

The course is being set up, Lee says, to make it more spectator-friendly, with better walking areas and viewing locations that place golf fans close to the action.

And Lee shares an interesting and somewhat startling detail that, upon reflection, makes perfect sense for a course owned by the Kohlers of bathroom fixture fame. He stops his pickup truck and points to what looks like gravel along the side of the road.
“We used crushed toilets to make that,” Lee says matter-of-factly, but with a faint smile playing on his face.

On this early spring day, the bentgrass on the greens and the fescue in the fairways has yet to begin changing from winter’s browns to the green of spring. But that green will soon enough begin creeping across the course—and Lee will be paying close attention to any disease or other problems that may try to establish a foothold.

For Lee and his staff, preparation for the PGA Championship has been going on for years: the close monitoring and treatment for disease and insects, the careful maintenance of the course throughout the playing season, when Lee’s crews are out morning and night raking, mowing and grooming.

Staff with the PGA have been on the site for two years, working from a large office trailer and keeping track of preparations, figuring out such details as where structures are going to go and where ropes will be placed to guide and control spectators.

The PGA course conditioning guidelines for championship competition give some indication of just how much attention to detail is necessary—consistent green speeds that are calculated with an instrument called a stimpmeter, mowers that are very precisely calculated to mow greens between .150 and .100 of an inch, the required use of bunker sand with grains that are measured so that no more than 25 percent of them are .25 mm or smaller.

“We go out all day with the guys from the PGA,” says Lee. “We’ve learned to pack a lunch.”

So it’s easy to see why Lee’s relationship with the experts at CALS becomes even more important as the championship draws near. Though Lee is adept at dealing with most of the challenges turf has to offer, the researchers at the Turfgrass Diagnostics Lab can often spot problems that remain invisible to most.

Back at the lab, Bruce Schweiger remembers puzzling over disease samples sent in by another client. To the client, the problem looked like dollar spot, but Schweiger knew that was not the issue. CALS entomology professor and UW–Extension specialist Chris Williamson was working nearby, and Schweiger asked him to take a look.

“Oh,” Williamson said. “Ants.”

It turned out that Williamson had done research on the problem some time before and had discovered that, during the mating season, some ant species go to war. They attack each other by spraying a nerve toxin that contains formic acid. That acid burns the turf and leaves lesions that look suspiciously like dollar spots, Schweiger recounts.

Such are the strange problems that could arise to plague Lee and his crew as they tend the course during the championship.

And those worries are on top of the intense maintenance that requires around-the-clock diligence once the event begins. Most crew members stay on-site working hours on end during championship week, Lee says, sleeping in big shelters set up for that purpose, snoozing in reclining chairs and watching the golf action on television screens.

Plant pathologist Paul Koch worked during the 2004 championship as an intern on one of the two- and three-person green crews that are charged with caring for a particular green and making sure during the week that it is cut morning and night and maintained to the PGA’s exacting specifications.

Sometimes, Koch says, that requires a cut of a mere sliver, no more than the depth of three credit cards or so stacked one upon the other.

One damp early morning during the championship, Koch recalls, Lee dispatched crews to squeegee the dew from tees. Koch was met during the chore by one of the professional golfers, who marveled at what Koch was doing.

“He said, ‘I can’t believe you guys are doing this so that we don’t have to walk in dew,’” Koch recalls.

Through the entire championship, Koch says, Lee remained cool and collected.

Of course, going into the week of a championship, Lee has already made sure there is little that can go wrong. A recent tour of the course included a visit to the maintenance building garage, located just outside the door from Lee’s spartan office (aerial shots of the course being the most elaborate decoration).

Lee walked to one of the 60 big mowers lined up and gleaming in neat rows. He tilted one up and suggested running a finger across one of the blades.

It was razor sharp.

Learn more at the following websites:
O.J. Noer Turfgrass Research and Education Facility: http://ojnoer.ars.wisc.edu
Whistling Straits: www.americanclubresort.com/golf/whistling-straits
PGA Championship: www.pga.com/pgachampionship

Insects For All

Life’s astounding diversity is rarely more apparent than on a warm summer night when the porch light glows and we are ensconced behind a protective mesh of screen, reading or dozing after dinner.

It is then that the din begins to rise in the gathering dusk.

From out there, beyond our domestic ramparts, the buzzing, fluttering horde is gathering. Soon the screen will billow and dance beneath their numbers—emissaries from a class that is as profligate and strange as any ever created by even the best of our science fiction masters.

June beetles. Katydids. Moths and crickets. Beetles. Mosquitoes and no-see-ums. Mayflies. Lacewings. The constant tick and ping of their assault on the screen is a reminder that we humans are but bit players in a world that really belongs to them—the insects.

Behind our screens we fight a nervous and mostly futile holding action.

Most of us have little idea what we’re really up against when we array our meager weapons against the insects—our sprays and our treated jackets and head nets and our zappers and swatters.

But there is a place on the UW–Madison CALS campus that might give you a pretty good idea of why we are largely at the mercy of this winged, barbed, needle-nosed, multilegged, goggle-eyed empire.

Welcome to the University of Wisconsin Insect Research Collection, one of those wonderful hidden gems of curated knowledge. Open the door and you drop down Alice’s rabbit hole into a world of carefully preserved dung beetles, walking sticks and enough mounted lice to give even the most stoic grade-school mom nightmares.

Stashed in a warren of rooms on the third floor of Russell Labs—and in an annex on the third floor of the Stock Pavilion—are more than 3 million curated insect specimens, along with 5 million more unsorted bulk samplespreserved in jars and tiny vials of ethyl alcohol.

You will find hundreds of thousands of every kind of insect you can imagine, meticulously arrayed in glass-topped wooden drawers in rank upon rank of cabinets. Here are specimens from around the world collected over the last 170 years by a cast of brilliant characters ranging from an entomologist who was known internationally for studying and espousing insects as food to a curious young naturalist who tragically died in a car crash at age 33 and left behind as pets two parrots, a boa constrictor, and two large spiders.

In Russell Labs, the collection is approached down a hallway guarded by glass cases of mounted moths, butterflies and one giant walking stick large enough to hang laundry from. Inside are walls and aisles lined by so many cabinets and drawers that they challenge the extravagance of Kim Kardashian’s walk-in clothes closet. But here, instead of the scent of perfume, you will be greeted by the distinctive but not altogether unpleasant lingering odor of naphthalene, once used to keep live bugs from eating the mounted dead bugs.

You will also likely be met by entomology professor Daniel Young, the collection’s enthusiastic director. Chances are he will be wearing a T-shirt that depicts an insect of some sort. At our first meeting, he sports a shirt fromthe 2006 meeting of the Entomological Society of America. Once you get to know him, his wardrobe seems the least unusual thing about him. In fact, Young, like just about everyone who has anything at all to do with this remarkable collection of insects, seems as pleasingly eccentric as any of the myriad species in the giant insect mausoleum he tends. On one visit, Craig Brabant, one of Young’s graduate students, is busy in the lab and hardly looks up at an inquiry about his professor’s whereabouts.

“Oh, he’s back there with his beetles somewhere,” Brabant said with the nonchalance of a dedicated and somewhat distracted bug person.

When Brabant refers to “Young’s beetles,’’ you have to understand what this truly means. Young has traveled the world in search of beetles—specimens of the order Coleoptera. This has been his passion since boyhood, when he fished for trout with his father in Michigan and paid close attention to the flies the fish slurped from the surface of such rivers as the Au Sable and the Pere Marquette.

Young’s course as a prolific collector of beetles was set when he was an undergraduate at Michigan State University and a fellow student who collected beetles suddenly became more enamored with bees that pollinate cucumbers. He turned his beetle collection over to Young—and ever since, Young has never met a beetle he didn’t want to name and classify.

Just how big a task does Young face in his chosen field of study? There are more than 300,000 species of beetles, he says, compared with 4,000 species of mammals. In his book The Variety of Life, Colin Tudge writes that about a fifth of all known animals are beetles. Yet Young keeps tilting at his own private windmill. For more than 40 years he has collected more than 200,000 specimens—and that collection now resides in the cabinets in Russell Labs.

Now Young is faced with an undertaking that seems almost as daunting as putting the world’s beetles in order. He is overseeing the Department of Entomology’s
ambitious effort to digitize the entire insect research collection, taking digital photos of all the insects and putting them online as part of a web-based project called InvertNet, which stands for Invertebrate Collections Network.

Lest you fear for Young’s sanity, he will not be spending the rest of his career snapping photos of millions of insects. The project, a collaborative effort involving 22 Midwestern insect collections housing more than 50 million specimens, has been made possible by the development of a robotic digital camera that can image an entire drawer of mounted insects in seconds.

The department took delivery of the unique $6,800 camera in November and, like kids with a present on Christmas day, Young and his students began playing with it immediately. Installed in a place of honor on a desk in one of the research rooms next to its controlling computer, the camera is a marvel of robotic engineering. Ensconced in a steel frame and suspended from three arms that are outfitted with multiple springs and gears, the camera is designed to move precisely and rapidly above a brightly lit drawer of mounted specimens. Its movement, programmed by the computer, is mesmerizing. With a soft hum, it crawls back and forth and up and down, as insectlike in its movements as the creatures it photographs.

With the camera, the job of digitizing the Wisconsin collection, along withmore than 20 other such collections throughout the Midwest, becomes not only manageable but also affordable, according to Young. Until now, such an effort was slow and costly, about $1 per specimen as opposed to 10 cents per specimen with the new camera. It also minimizes the risk of damaging delicate specimens. And the camera does not take just a single image of a specimen; researcher will be able to manipulate the photograph to see different parts of each insect, almost as if it were in 3-D.

Even with the advanced camera, Young estimates that getting the entire collection photographed and onto the web could take as long as two years. But the benefits, he adds, are many. Fewer than 5 percent of invertebrate collections in the U.S. are available online. And making collections available at the click of a computer key will make the knowledge that they preserve much more broadly available, not only for researchers but also for a lay public that is endlessly fascinated by bugs—but frequently poorly informed about their value in the web of life.

“Many of the advantages are for the taxonomic community,” Young says. “I can’t just up and visit all the collections in the world. But if I can remotely see them, I can point out a drawer to a local curator. I can even point to a particular part of a drawer, specific specimens, and ask the curator to loan them to me.”

“There is also a tremendous potential benefit for education and outreach,” Young continues. “This adds a new K–12 students so they can remotely visit the collection. They can pull outthe drawers and look at that specimen that was collected in 1890. The bottom line is that we have to make this relevant beyond the taxonomic community.”

Understanding the value of having the insect collection available online requires appreciating the value and intrigue of such collections to begin with. Such an appreciation comes not only from recognizing the wealth of scientific data they harbor, but also from hearing the stories of how a particular collection came to be. The Wisconsin lab is fairly haunted by all of those, professional and amateur, who at one time or another wielded their insect nets in a pasture or woodlot to add specimen after specimen, drawer after drawer, cabinet after cabinet—lately to the tune of about 21,000 specimens a year.

Their names are all there in the drawers, forever connected to their insects by the information on the tiny white tags attached to each pinned specimen. The slips of paper contain in black type the collectors’ names and very concise descriptions of the insects and the details of their capture (“Found dead in the middle of a dirt road,” reads the short story of one tiny, nondescript beetle). Now the names of insect and collector alike will be forever preserved in the digital ether of the World Wide Web.

Consider, for example, the 16,050 syrphid, or flower flies, collected by Charles L. Fluke, the first director of the research collection. His collection is considered among the best in the nation, according to Young, and Fluke’s accomplishment is recognized by a room named in his honor.

Or there are the approximate 14,000 mounts and 6,000 slides of mosquitoes collected from around the world by Robert J. Dicke. And 175,000 aquatic insects, almost all of them from Wisconsin waters, collected by William Hilsenhoff. “There was hardly a lake, river or stream he didn’t sample,” says Young.

Of all the individuals who have contributed to the Wisconsin collection, few have a story that can match that of the late Gene DeFoliart, a long-time CALS professor of entomology who studied how insects spread viral diseases. In the early 1970s, however, DeFoliart became fascinated with insects as an important food source throughout the world. He developed an international reputation for his expertise on the subject. His work even got a comedic nod from Johnny Carson, who joked about DeFoliart and “roast of roach.”

Young and others recall DeFoliart serving up various insect concoctions in the department. His daughter, Linda DeFoliart BS’81, who now lives in Alaska, remembers her father bringing home leftovers.

“I remember he brought us mealworm and sour cream potato chip dip,” says Linda. “And deep-fried crickets. We reheated those in the microwave. They had the consistency of popcorn and they kind of stuck in your teeth.”

But Linda also recalls her father’s obsession with collecting and stories about him as a boy growing up in rural Arkansas, riding around on his bike with his butterfly net and a glass jar of cyanide—his “kill” jar. His passion and his insects are forever preserved in the Wisconsin collection—hundreds of mosquitoes, 1,500 slide-mounted lice, and 5,000 butterflies and skippers that Linda and her siblings donated after Gene DeFoliart’s death in 2013.

“We decided to donate the collection to the university because we thought that was where Dad would have liked for it to reside,” says Linda.

The collecting and naming and classifying continue today. In Mequon, a dermatologist named Peter Messer is a wellknown amateur taxonomist who has become a recognized expert on ground beetles, one of the most species-rich families in the entire beetle group. He is regularly published by entomological journals, and in a 2009 published survey he identified 87 species of Wisconsin ground beetles not previously recorded from the state, some of which he collected in his backyard. His beetles are well represented in the Russell Lab collection.

“There is great satisfaction in knowing almost everything about something that hardly anyone else knows about, and then conveying that knowledge to others,” says Messer.

Young emphasizes that the digital images and online availability do not diminish the need for the actual physical collections gathered over the years by all of these dedicated souls. Today, for example, much of the research on insects involves studying their DNA for clues to mysteries ranging from identification and evolutionary change to the insect’s potential role in understanding the spread and treatment of disease.

“Now that we have the image, we still need the specimen. The image isn’t a substitute. Specimens can give you DNA ,” Young says. “Here’s the thing—we don’t even know what these collections can give us. We weren’t even talking DNA 40 or 50 years ago.”

According to Young, the collection has also become an important resource for scientists studying climate change, another phenomenon that could not have been foreseen in the early years of the collection. Each specimen, Young explains, represents not only the body of an insect but a preserved point in time. Knowing what insects existed inwhat places and at what periods allows researchers to trace changes on the landscape.

“Some see a dead beetle on a pin; we see a collection event, a rich story that continues to unfold with potential ‘plot twists’ we are not yet even aware of,” says Young.

But just for purposes of identifying and classifying insects, collections are invaluable. Collecting involves the wonderfully strange discipline of taxonomy, the scientific process of placing organisms into established categories and the use of hierarchical groupings with names that we all struggled to memorize in high school biology—domain, kingdom, phylum, class, order, family, genus, species. Though it might seem an arcane art to some, taxonomy is a fundamental and essential step toward understanding the natural world and how it works.

“People are intimidated by it,” Young says. “It looks like a tedious, potentially boring mystery. But we are all taxonomists. Let’s say you want a box of butterscotch Jell-O pudding when you go to the store. Do you know what aisle to look in? Or is it just randomly placed in the store?”

“The first question everyone asks when they contact us about an insect is, ‘What is it?’ The second question is, ‘What does it do?’” Young continues. “The first question is taxonomy. The second is about ecology and natural history— and without the taxonomy, you can’t tell anything about the ecology and the natural history.”

A close colleague of Young’s— Darren Pollock, professor and head curator of collections in the Biology Department at Eastern New Mexico University—tells how he was able to use the Wisconsin collection to identify a previously undescribed species. Like Young, he specializes in beetles, specifically (among others) of the genus Mycterus. This particular taxonomic adventure started when Young sent Metallic wood-boring beetles (Euchroma gigantea)Pollock some Mycterus specimens from the Wisconsin collection.

“Specimens can ‘languish’ in collections for years, decades or even centuries,” says Pollock. “More than a few of these specimens were collected decades ago, in the late 1940s. And then they sat. And sat. Until I looked at them.”

“It was obvious to me that these old Wisconsin specimens represented a totally new species, the closest relative of which is a species from southern Florida,” says Pollock. “Now they are all labeled as type specimens of the recently described species Mycterus youngi Pollock!” (The “youngi” is for Daniel Young.)

This enthusiasm, so typical of those drawn to taxonomy and exemplified in collectors such as Pollock and Messer, seems to come not only from a preoccupation with order, but also from a deeper desire to acknowledge and name insect life even as we hasten its passing from the planet. Young says the most rational estimates place the number of insects with us right nowat between 3 and 5 million. And, he says, only about 20 percent of them have been identified. It helps explain the almost manic drive of taxonomists to discover and describe and label.

“When there are 30 species in a genus and you’ve collected 29 of them,” Young says, “guess what you’re going to be doing next summer?”

Pollock praises the Wisconsin collection for its size and diversity. And, like Young, he sees such collections as arks that affirm our connections to the natural world and solidify those ties by giving even the tiniest speck of buzzing, darting life a name and a nod for just being.

And then there is the ticking clock.

Collections are also repositories for what we’ve lost. Though they seem ubiquitous, insect species are going extinct at an alarming rate, according to a study by entomologist Robert Dunn of North Carolina State University. He estimates that hundreds of thousands of insect species could be lost over the next 50 years. The reasons are many, but habitat loss is a major culprit. Monarch butterfly populations, for example, are suffering because of the destruction of the Mexican forests where they winter.

And Young says he knows many areas where he used to collect, especially in southeastern Wisconsin, that are now paved and developed, the insects he once found no longer in evidence.

Young doesn’t know for sure how many extinct or extirpated species are represented in the Wisconsin collection. But he knows there are many resting in the drawers, their stilled, pinned forms a rebuke to a world that took little or no notice of their existence or their passing.

The UW Insect Research Collection( WIRC) may be found at http://labs.russell.wisc.edu/wirc/. The digitized collection from the Invertebrate Collections Network is at https://invertnet.org/.

If you wish to support the collection, please make your check payable to UW Foundation and send it to UW Foundation, US Bank Lockbox 78807, Milwaukee WI 53278-0807. On the memo line, write Entomology–WIRC.

Meet the Scourge

IT IS AN INSECT LITTLE BIGGER THAN A GRAIN OF RICE. But the invasive emerald ash borer may as well be Godzilla for all the chaos it has brought to the Upper Midwest’s forested landscapes.

The borer has already laid ruin to the ash that dominated urban and lowland forests in Michigan, where it first turned up near Detroit in 2002, likely a hitchhiker on wooden shipping pallets from China. And in dozens of Wisconsin villages and cities, street terraces are marked by the stumps of ash trees already removed because of infestation.

The Wisconsin Department of Natural Resources says the borer has killed more than 50 million ash trees and is now found in a dozen states, including more than 30 counties in Wisconsin. Though it is not a threat to human health, the ash borer’s inevitable spread is likely to dramatically change the face of both urban and state and national public forests. The insect has already cost Wisconsin communities millions of dollars as they prepare for its assault and as they begin to remove and treat infested and threatened trees.

And it has proven a massive challenge to researchers—including entomologists at CALS—as they bring science to bear on understanding and slowing the march of the tiny, tree-killing insect and reducing its impact where it is established.

CALS entomologist Chris Williamson, who has studied the insect since 2003, says the word “cataclysmic” is not too strong to describe the eventual devastation that will be wrought by the emerald ash borer.

“The emerald ash borer means the demise of ash trees in North America,” says Williamson, who is also a UW–Extension specialist.

His colleague, CALS entomologist Ken Raffa, has researched and introduced parasitic wasps as potential predators that might help at least slow the insect’s steady march across the continent. But Raffa also said there is little doubt that such efforts are mostly holding actions against a foe that cannot be stopped.

“The genie is out of the bottle,” Raffa says.

Even so, in the face of what seems to be nothing but bad news, research at CALS and elsewhere has provided weapons that are proving effective at slowing the insect, giving communities time to plan and homeowners the ability to treat and possibly save treasured trees with insecticides.

In fact, Williamson, surveying a stand of ash trees he has treated and studied at Warner Park on Madison’s North Side, says he actually gets irked when someone says there’s nothing that can be done to save an ash tree. He has spent long hours in the field, testing various insecticides. And he has found that treating an ash tree early enough and repeating that treatment every couple of years can save even large, prized trees that homeowners want to protect. Insecticides such as emamectin benzoate, marketed under the brand name “TREE-age,” have also given urban foresters an effective tool to slow the loss of ash and temper the impact on a community’s cooling leaf canopy.

Treatment has also been found to be less expensive than was originally anticipated. Experts with Arborjet, a company that has worked with a number of communities on treatment, says that an injection treatment, in which the insecticide is shot into the tree through holes bored in the bark, costs on average $50 to $60 every two years for municipalities. The cost is more for individual homeowners, according to Arborjet, but still cheaper than removal and replacement.

Research by Williamson and others has shown that when it comes to protecting an ash from the voracious borer, action must be taken.

“If you have an ash tree you want to preserve and you don’t treat it, it will die,” says Williamson.

WHAT MAKES the emerald ash borer, also known as EAB, such an effective killer?

First, it is an invasive species. As such, it arrived on our shores to find it had won the insect lottery—millions of acres of tasty ash, no natural enemies poised to make a dent in its growing populations, and ash trees with no natural defense against the feeding larvae.

Added to this deadly mix of traits, according to Williamson, is the insect’s near invisibility at the early stages of infestation. The flying insect is only about an eighth of an inch wide, he says, and it lays its eggs high in a tree’s upper branches. The larvae emerge within a month, bore through the tree’s bark and begin feeding on the soft wood beneath, creating a crazy map of looping trails. All of this—from the infestation by flying adults high in the tree to the burrowing by larvae beneath the bark—is nearly impossible to spot, Williamson says. The only way to detect an infestation is through a laborious process of peeling away the outer bark of a tree and looking for the telltale trails left by the gnashing larvae. Unfortunately, by the time such evidence is found, it is too late to save the tree.

This cloak of invisibility, Williamson says, has made the borer a particularly deadly foe. Entomologists have estimated that, based on the extent of the damage to ash stands in Michigan, the borer had been dining on trees for nearly a decade before its presence was discovered, notes Williamson.

In the interim, the larvae were fatally damaging the ash trees’ inner tissues, or cambium, the layers of the tree that carry food down to the roots and water and nutrients up to the leaves.

“It’s like me going to your house without you knowing it and destroying your plumbing,” says Williamson.

Williamson notes that if the tree’s cambium is significantly damaged as a result of the feeding larvae, treatment is likely futile. “They’ve destroyed the conductive tissues,” he says.

While Williamson has focused on the study of insecticides, Raffa has worked to find predators that might help slow the borer.

Researchers with the U.S. Department of Agriculture studying the insect in 2003 in its native China haunts found parasitic wasps that feed on the ash borer larvae, Raffa notes. Scientists narrowed their focus to three species that they concluded might be effective and would not attack native insects. Eight states released these parasitic stingless wasps between 2007 and 2010, and in 2011 Raffa, researchers from his laboratory, and members of state agencies cooperatively released specimens of the three species at Wisconsin’s Riveredge Nature Center, near Newburg.

Raffa felled four infested trees in 2013, sectioned the logs and searched for wasps. He found that one species had survived and thrived.

“We knew they had established a population,” says Raffa. “There’s no doubt they were killing ash borers because that’s all they feed on.”

Now more of the wasps are being released by DNR pest specialists. But Raffa warns that, with the rapid spread of the ash borer, it is too late to hope that the wasps will have an immediate impact. Rather, Raffa says, the wasps may multiply and provide control after this initial, destructive wave of ash borer activity. Once the ash borer destroys much of its food source, the wasps may have a better shot at keeping their numbers in check.

“Their numbers are inadequate to affect this first big wave,” Raffa says. “I’m hoping the wasps will be there to kick EAB when it’s down.”

Raffa adds that other researchers, including scientists at Ohio State University, are searching for and studying ash trees that survive the first ash borer attacks. Such trees may offer hope because of a natural resistance that, once understood, could be bred into a new borer-resistant strain of ash.

The problem, both Williamson and Raffa say, is that such science takes time. “And time is not our friend here,” notes Williamson.

Most effective in the short term at slowing the spread are DNR rules aimed at preventing the movement of firewood around the state. Raffa says the insect does not travel far on its own, and that the insect spread through the state is due mostly to its hitching rides on firewood.

A federal and state quarantine on counties where the ash borer is present requires tree nurseries and the wood industry to take precautions that prevent the spread of the borer in nursery stock or logs (see map on page 20). General public restrictions for bringing firewood onto state properties are posted here.

AT STAKE ARE extensive stands of ash that most communities planted in the wake of another tree calamity—Dutch elm disease. Often cited as being similar in impact to the emerald ash borer’s spread, Dutch elm disease first appeared in the late 1920s and moved steadily across the continent through the 1970s. Caused by a fungus and spread by bark beetles, the disease killed 77 million of the much-beloved American elms between 1930 and 1989. Lost in that disaster were the beautiful urban tree stands that graced so many city and village streets, creating cathedral-like arches of shade.

In the wake of that loss, urban foresters planted millions of green
and white ash trees. They grew fast, adapted well to urban growing conditions and resisted droughts. Madison’s streets, for example, are lined with ash. The city’s forestry department estimated that 21,700 of its publicly owned trees are ash. Thousands more are found in parks and on private property. Milwaukee has more than 30,000 ash trees lining its streets.

Statewide, Wisconsin has more than 770 million ash trees, according to the DNR’s forestry division. That’s 7 percent of the total tree population, and they dominate lowland forests. In the state’s urban areas, according to the agency, 20 percent of street trees are ash.

Wisconsin ecological pioneer Aldo Leopold observed that disturbing one part of an ecosystem often has powerful and far-removed consequences. So it is with the loss of the state’s ash trees, according to forestry experts. The loss of a large percentage of a community’s tree canopy can lead to everything from more flooding to increased energy bills for homeowners, according to Marla Eddy, Madison’s city forester.

In a 2004 study of urban trees in Minneapolis, researchers with the U.S. Forest Service found that the benefits of landscape trees dramatically exceed the costs of planting and care over their lifetime. Each year, the study found, 100 shade trees catch about 216,200 gallons of rainwater and remove 37 tons of carbon dioxide as well as 259 pounds of other pollutants.

The researchers calculated that one well-placed large tree provides an average savings of $31 in home energy costs each year. And trees add value to a home, according to the study, which found that each large front yard tree adds 1 percent to the sales price of a house. Big trees can add 10 percent to property value.

So losing such a large percentage of the tree canopy in a community is about more than just appearances. That’s why Milwaukee has chosen to treat as many as 28,000 of its 33,000 trees—to slow the loss of ash and keep as much of the canopy in place as possible as infested trees are removed.

In communities that were hit early by emerald ash borer, saving trees has been more difficult. In Oak Creek, just outside Milwaukee, EAB was discovered in November 2009, making it ground zero for the borer’s assault on Wisconsin. In the absence of tested pesticides at the time, the city started an ambitious removal and replacement program aimed at getting new trees up as soon as possible, according to Rebecca Lane, Oak Creek’s urban forester.

In fact, Lane, in anticipation of the insect’s arrival, had already been taking steps to protect the canopy. “When we heard about EAB, I almost immediately stopped planting ash trees,” Lane recalls. Of the city’s 10,000 street trees, 1,500 were ash. Of these, 750 have been removed and 750 are under treatment. “As treatments became deemed dependable, we began to use insecticides for long and short-term ash treatments,” notes Lane.

Other communities, too, have been able to take advantage of insecticides that have proven effective, thanks to the work of Williamson and other researchers.

Madison is treating all healthy street trees 10 inches in diameter or larger, and anticipates saving as many as 60 percent of its street ash tree population, according to city forester Eddy.

“We have to think long-term,” says Karl van Lith, organizational development and training officer for the city of Madison. “We’re thinking about the tree canopy for the next generation.”

WHILE RESEARCHERS have provided some help for urban forests, the more dense stands of ash in county, state and national forests will be much harder to save, according to Andrea Diss-Torrance, a plant pest and disease specialist with the Wisconsin Department of Natural Resources.The chemical treatments used in urban forests require application to individual trees, which is impossible when you’re talking about entire forests. Williamson says some research has looked at the effectiveness of aerial spraying a specific strain of Bacillus thuringiensis, similar to a bacterial strain used to control gypsy moth caterpillars. The pathogen is sprayed over the canopy and kills flying adults.

The practice remains limited, Williamson says, and comes with its own set of problems, not the least of which is the potential environmental impact of widespread spraying, as opposed to the controlled treatment of individual trees.

The bottom line is that saving extensive stands of ash trees in Wisconsin’s public forests is going to be very difficult, acknowledges Diss-Torrance. “Our forests are going to be greatly changed,” she says.

Diss-Torrance confirms that, just as the loss of urban ash trees will have environmental impacts, the death of thousands of forest trees is likely to cause damaging changes to the state’s forest ecosystems.

Of special concern are lowland forests, such as black ash swamps. Research has already shown that the loss of black ash in these wetland areas can result in a rise in water levels because the trees are no longer there to soak up the water. That change, in turn, results in the growth of problem species such as reed canary grass, which muscles out other plants and so changes the wetland that it is no longer able to support its native cohort of plants and creatures, from amphibians to insects.

“You end up with very different communities,” Diss-Torrance says. The loss of black ash would be

keenly felt by several of Wisconsin’s Native American tribes, which have traditionally used the supple wood of the ash to make baskets for storing food.

“These baskets have always been a symbol of home and abundance,” Diss-Torrance says. “They’re central to the harvest and to Native tradition.”

In southern Wisconsin, green ash is prominent among the trees that line lakes, rivers and wetlands.

“We have a lot of lakes and a lot of wetland areas,” Diss-Torrance notes. “And they’re all dominated by green ash. Those trees help stabilize banks. What happens when they fall into the water?”

So the stakes are high as the battle continues against this tiny foe.

Williamson is spending less time on borer-related research but continues to spread the word about the use of insecticides—and he still spends a lot of time consulting with communities as they battle the insect.

In fact, Williamson says, with considerable misinformation circulating, the job of educating the public about the insect has been an important task of CALS scientists. He figures that between 2003 and 2013, he gave nearly 170 talks about the emerald ash borer.

One important lesson to come from the ash borer, Williamson says, is the need to diversify an urban forest’s population. It’s a lesson that should
have been learned after the spread of Dutch elm disease, he notes. Now the rule of thumb is that no single species should represent 10 percent or more of a community’s total tree inventory.

Both Eddy, the city forester in Madison, and Lane, her counterpart in Oak Creek, say creating that diversity in their plantings is a priority in the wake of the emerald ash borer.

Both also say that the disastrous spread of the insect has given them new insight into the touching connections between people and the natural world, especially their attachment to the beauty and solace of trees.

“That human factor is so much larger than I thought when I first started doing this,” says Lane. “I thought of this as mostly a technical career.”

But around Yahara Place Park, on Madison’s near East Side, neighbors have seen ash trees beginning to fall and have decided to mobilize to protect what trees they can, according to Paul Nichols, one of the neighborhood organizers.

He and others went door to door collecting money to pay for treatment of healthy ash trees in the park alongside Lake Monona. Storms have recently roared through and destroyed a number of towering cottonwoods. So the remaining ash trees—about 22—took on added significance. Nichols and others took advantage of the city’s “Adopt-a-Park Tree” program—which allows residents to pay for treatment of treasured park trees—to make sure that the ash got treated.

Why make such an effort? Nichols, strolling the park on a pleasant summer morning, pointed to the stumps of the removed trees and recalled the beauty of the big trees and their arched branches—old friends that were once visible from the front window of his home.

Nichols and others say they miss the trees and understand they may not be around when the ash that are saved grow to maturity. But, he adds, they know that others will someday know and appreciate the view of the blue lake framed between stately trunks, or the pleasure of sitting beneath a shady canopy on a lazy summer afternoon.

“What we’re really talking about,” Nichols says, “is doing something for the generations to come.”

Goodbye, Bug Guy

FOR 35 YEARS PHIL PELLITTERI BS’75 MS’77, an entomologist with CALS and UW-Extension, has provided patient counsel to a bug-plagued populace on everything from bedbugs to lice and bird mites to fleas.

Now 62 and set to retire in March, Pellitteri has this sage bit of advice gleaned from a long and accomplished career as an insect diagnostician: The bugs are going to win.

“The insects are in control and we’re not,” says Pellitteri. “They’ve been here since before the dinosaurs. They’ll be here after we go.”

Indeed, the task faced by the affable Pellitteri each day for all these years takes on Sisyphean qualities when the challenge he has faced is fully understood.

This is what Pellitteri is up against: According to the Entomological Society of America, there are nearly 10 quintillion insects in the world. That’s a 10 followed by 18 zeros. Experts say more than one million different species of insects have been identified. And it is estimated that as many as 30 million insect species in the world have yet to be discovered and named.

No less an expert than Edward O. Wilson, the world’s foremost source on ants and curator of Harvard University’s Museum of Comparative Zoology, points out that the world’s other creatures exist in paltry numbers compared to insects. Of the 42,580 vertebrate species that have been scientifically described, Wilson says, 6,300 are reptiles, 9,040 are birds, and 4,000 are mammals. Of the million different species of insects that have been described, 290,000 alone are beetles, Wilson marvels in his book In Search of Nature.

“If humans were not so impressed by size alone,” Wilson writes, “they would consider an ant more wonderful than a rhinoceros.”

Count Pellitteri among those who would side with the ant—that is, when he is not conspiring with a caller on how to get rid of a nest of the pesky insects.

Since May 1978, Pellitteri has built a statewide reputation as the go-to expert on everything insect. In the summer months he fields an average of more than 30 calls a day that run the gamut from somebody being bitten by a mysterious insect to someone accidentally swallowing one.

Pellitteri’s fiefdom is a suite of bug-filled (most of them mounted) rooms in the CALS Department of Entomology on the first floor of Russell Labs. He has worked for years with one foot in academia and the other, through his work with UW-Extension, in the world of gardens, termite-infested homes and insect-riddled farm fields. In the entomology department he is a faculty associate, and he has played an important role over the years as a teacher and an adviser to generations of students. Department chair David Hogg calls Pellitteri “the face of the department.”

But it is Pellitteri’s self-made role with UW-Extension that has allowed him to bring his and the department’s expertise to bear on the challenges of keeping the insect horde at bay. Technically he is called a diagnostician. To the gardeners of the state, he is more fondly known as the “bug guy.”

Whatever he is called, he is beloved by those who run panicked from their gardens to the telephone or computer with news of the latest insect disaster. Lisa Johnson BS’88 MS’99, a Dane County UW-Extension horticulture educator, works with Pellitteri on the Master Gardener program and knows how much people have grown to rely on him. He is, she says, the embodiment of both Extension’s outreach mission and the Wisconsin Idea.

Communicating Science in the Digital Age

Two months after retiring from the Madison-based Wisconsin State Journal, where for 34 years he’d reported primarily on science and the environment, Ron Seely splays his hand on the table and points to a small knot of flesh on his palm.

It’s from how he cradled his iPhone, his physician told him, especially when Seely was constantly tweeting live from such events as legislative hearings on mining in Wisconsin.

“It was exhausting,” says Seely, who like many journalists balanced the new duties of tweeting and other social media tasks with researching and writing his stories, all while meeting daily deadlines. “It’s a vicious cycle: You create the expectation that people will have news instantly.”

Seely began his career in daily journalism with hot type and ended it with hot tweets. And his career—which includes serving as a teacher of life sciences communication at CALS—reflects the seismic changes that have jolted science journalism.

Take it from anyone who has ever struggled through freshman biology or o-chem: science news was hard enough to understand before the collapse of traditional media. Then Twitter and other social media exploded, blogs proliferated, reader comment sections swelled—and the science got even more complex.

It’s no longer just the newspaper plopping on your doorstep—the science journalism of years past, when discoveries were presented in one-way fashion by writers with science expertise and passively consumed by a trusting public. Science reporting was hit hard by the economic collapse of traditional media, with many science reporters laid off or not replaced upon retirement (example: the New York Times closed its environment desk early this year). As science journalism migrated online, web technology blurred the lines between professionally trained journalists, bloggers and other commentators, the public and, most notably, the scientists themselves, who face new and evolving challenges in understanding science communication.

Today, coverage is tweeted, re-tweeted, “liked” on Facebook, interpreted and reinterpreted by any willing participant—and is the target of instant and often rude, politically tinged reader commentary. With one in seven people actively using Facebook and Twitter users posting 340 million tweets daily, understanding the interaction between science news and readers is crucial.

In short, science communication is being reborn while the media reinvents itself online. That collision raises concern about how society views the science that can solve energy problems, mediate climate change, improve health and feed a hungry planet.

Stem cells, genetically modified organisms, nanotechnology, bioenergy and other complex advancements have all poured down on an American public ill prepared to understand even basic science. The National Science Board, for instance, in 2010 reported that only 73 percent of U.S. adults were able to answer correctly that the earth revolves around the sun; only 52 percent could say how long that takes. And a recent survey by the Pew Research Center for People and the Press found that only 47 percent of respondents knew that electrons were smaller than atoms.

That lack of knowledge, combined with built-in attitudes about science among much of the public—often rooted in religious or political beliefs—makes groundbreaking discoveries difficult to grasp or embrace.

“We’re no longer just using microscopes. We’re using scanning, tunneling nanoscopes that go into 1,000 times more detail,” notes Dietram Scheufele, a CALS professor of life sciences communication. “The science is more complex, and just as complex is the question of what we want to do with that science.”

Small wonder that when the public turns to the media, it is often flummoxed, whipsawed by Internet trolls’ nasty comments and unsure what to think of the science’s legal, social and

We used to believe that if we only explained to people what the science is about, they would understand and support it.

ethical implications. In the process, is innovation handcuffed by public opinion at just the moment when society needs it most?

Against that backdrop, Scheufele and his colleague Dominique Brossard are in the vanguard of researchers who are trying to understand the emerging media landscape and its volatile dynamics.