Shaping the Future of Farming

Thirty-five years ago, when CALS bacteriologist Winston Brill and his colleagues set out to exploit science’s newfound ability to manipulate genes to confer new traits on crop plants, the technology was, literally, a shot in the dark.

Working in a facility in Middleton, just west of Madison, Brill and his team blasted plant cells using a gene gun—a device that fired microscopic gold beads laden with DNA.

The idea was to introduce foreign genes that could confer new abilities on the plants that would ultimately be grown from the altered cells. First as Cetus of Madison, Inc., later as Agracetus and still later as a research and development outpost of Monsanto Company, the Middleton lab was, by all accounts, a hub of plant biotechnology innovation.

“Agracetus was the first in the world to engineer soybean, first in the world to engineer cotton, first in the world to field-test a genetically engineered plant,” recalls Brill, who was recruited by Cetus to establish the lab in the early 1980s. “Thus, the Madison area and the UW influence led to historically important events.”

In December 2016, the $10 million,100,000-square-foot facility—a warren of labs, greenhouses and growth chambers—was donated to UW–Madison by Monsanto to become the Wisconsin Crop Innovation Center (WCIC).

The hope, according to agronomy professor Shawn Kaeppler BS’87—now WCIC’s director—is that the center will add to its string of plant biotechnology achievements as one of just a few public facilities in the country dedicated to plant transformation, where genetically modified plant cells are taken from tissue culture and regenerated into large numbers of complete fertile plants.

The advent of the WCIC “is an unprecedented opportunity to add capabilities and capacity we couldn’t afford otherwise,” says Kaeppler, an expert on corn. Its acquisition by UW–Madison, he and others note, comes at an opportune time as powerful new techniques in synthetic biology are poised to make the development of plants with new or improved traits much more than a shot in the dark with a gene gun.

WCIC will function very much like a core facility, providing cell culture, phenotyping and plant transformation services for researchers at UW– Madison and other universities. It is also coming online at a time when the need for such resources is acute.

“There is a recognized need nationally,” explains agronomy professor Heidi Kaeppler BS’87, an expert in plant transformation who is serving as WCIC’s transformation technology director. “There are just a few public facilities around the U.S. and demand is outpacing the abilities of those facilities. It is a bottleneck.”

For researchers like bacteriology and agronomy professor Jean-Michel Ané, a member of the WCIC scientific advisory board, the new center means he will be able to devote more time to exploring such things as the genetic interplay that occurs when plants and bacteria collude to draw nutrients from the air through the act of nitrogen fixation.

Nitrogen-fixing plants such as soybean, alfalfa and clover are staples of modern agriculture. They are essential to the crop rotation practices that prevent exhaustion of soil from crops such as corn. Ané and many other scientists have long dreamed of engineering the ability to fix nitrogen into plants like corn to transcend the need for expensive and environmentally harmful chemical fertilizers.

However, engineering complex traits such as nitrogen fixation in plants that don’t have that innate ability is a monumental scientific and technological undertaking. To begin with, there are two organisms—the plant and a bacterium—working cooperatively. Each has its own genome, and many different genes from each organism are in play to accommodate the act of drawing life-sustaining nutrients from the air.

To confer that trait on corn, for example, is an exercise far more complicated than tinkering with one or a few genes, notes Ané. “The goal is to create maize that has this association. However, modifying a single gene will not be sufficient,” he says. “We modify many genes at a time. There is a lot of trial and error. We need to try many combinations.”

Those combinations come about in the lab as scientists alter individual plant cells by adding or subtracting genes of interest. Today, scientists can harness new techniques such as CRISPR– Cas9—a fast, cheap and accurate genome editing tool—and potent new cloning technologies that allow scientists to easily assemble multiple DNA fragments and their assorted genes into novel sequences.

Even with potent new tools like CRISPR–Cas9, engineering plants is a big, difficult task. A gene needs to be dropped in the right place on the genome and be in association with the right “promoters,” segments of DNA that initiate gene transcription, the first step toward expressing a new gene in an organism. Once plant cells are genetically altered, they must be transformed into large numbers of actual plants for further testing in the lab and, ultimately, the field. It is essential to know, for example, that the new genetic construct is stable, that the new genes are passed from generation to generation, and what effects they may have on plant growth or yield.

The promise of WCIC, Ané believes, will be the opportunity to work through all of those steps more efficiently and cost-effectively, and carry projects from the lab to the field much faster.

“We can focus on really doing science instead of growing plants,” Ané says. “We can now make genetic constructs very quickly. Within a month we can make hundreds of constructs. The limiting aspect is plant transformation. However, the scale of transformation we can do at WCIC allows us to think seriously about applying synthetic biology to plants.”

To begin with, WCIC is providing plant transformation services for corn, soybean and sorghum, big commercially important crop species. But Shawn Kaeppler envisions WCIC playing a role, as well, with crop plants that have not yet risen to the top of commercial research agendas.

To date, commercial interest has focused primarily on just a handful of traits—insect and herbicide resistance—in a handful of widely planted crops. Uncharted territory, Kaeppler says, exists in the full range of crop plants and their many different traits.

A ready example is switchgrass, a native perennial that is under the microscope at the Great Lakes Bioenergy Research Center (GLBRC), a U.S. Department of Energy- funded multi-institutional research center headquartered on the UW–Madison campus. The grass is seen as a potential feedstock for converting its biomass to liquid fuel. However, efficient conversion of plant materials to energy remains a challenge, and plant genetics will play a big role in refining the traits that will make that possible.

“WCIC will help lead us to the next generation of crop breeding and plant genetics,” explains Kate VandenBosch, the dean of CALS, referencing, broadly, the genetic makeup of the crop plants in play. “Scientific agencies at the federal level have invested a lot in understanding genomes, but we still have a lot of work to do to understand how those genes function.”

Indeed, genetic sequencing technologies have advanced to the point where new plant genomes are sequenced with increasing regularity. The genomes of crop plants like watermelon, cucumber, potato, soybean, wheat, corn and many others have been sequenced, but as VandenBosch notes, exploring those sequences to identify the genes that govern plant traits is an unexplored frontier.

Shawn Kaeppler’s own research, for example, is a window to both the complexity and opportunity that lurk in the genomes of plants. One of his interests is the complex of genes—involving anywhere from tens to hundreds of genes—that governs the root architecture of corn. Knowing more about the combination of genes that directs the plant to send shoots into the soil, it might one day be possible to engineer a plant that can send its roots deeper into the earth, providing farmers with a hedge against drought.

“Fifty to 70 percent of all maize genes are expressed in roots,” Kaeppler says. “Some control processes in all parts of a plant, and some specifically control root development and response to environmental stimuli.”

A gene of interest for Kaeppler and his team is one that influences root angle. “Altering root angle even five to 10 degrees can dramatically increase the rate that roots get deep in the soil,” as well as how much root biomass a plant lays down at depth, he explains.

Identifying those candidate genes and mutations of those genes means they can be selected and manipulated in the laboratory to generate plants with different root structures. At WCIC, those plants can be grown in quantity, their new qualities studied and, if promising, tested in the field. The goal, of course, is to provide a practical outcome that is useful to growers.

In plant science, numbers matter. The more plants you can grow to test a new genetic combination, the better, as there are so many variables in play.

“In many aspects of science, doing things on a large scale is critical,” says biochemistry professor Rick Amasino, an expert on flowering in plants. “To have WCIC in our capability is great. Large-scale transformation opens up a lot of possibilities.”

Amasino, who is also a member of WCIC’s scientific advisory board, views the center as an important new national resource. Individual labs, he explains, do not have the same capacity.

“This has the potential to be on a scale greater than any other university’s,” Amasino says. “Individual labs can’t generate the hundreds or thousands of transgenic plants needed to fully test certain hypotheses. Labs around the country and, hopefully, around the world can now do experiments they couldn’t otherwise do. There are so many opportunities out there.”

A Facility With Deep CALS Roots

The name is new, but the Wisconsin Crop Innovation Center (WCIC) holds a prominent place in the young history of agricultural biotechnology. The facility also has long and deep ties to CALS researchers and alumni.

Originally known as Cetus of Madison, Inc., the Middleton facility—owned by
the Cetus Corporation of Emeryville, California—opened in 1981 under the direction of CALS bacteriology professor Winston Brill. The Wisconsin Alumni Research Foundation (WARF) played a key funding role in the early days of the company.

Cetus of Madison, Inc. initially focused on evaluating and testing a wide variety of natural rhizobia species to better understand their role in nitrogen fixation and nodulation in legumes, with the hope of someday enabling maize to have that capacity.

As interest in biotechnology grew in the early 1980s, the facility’s focus changed to inventing and innovating ways to introduce genes into plants. In 1984, Cetus Corp. sold half of its interest in Cetus of Madison, Inc. to the WR Grace Co.—and thus the company name “Agracetus” was born.

Great discoveries followed. An electric “gene gun” and transformation methods developed at Agracetus revolutionized the plant transformation process. Many plant species were subsequently transformed, including tobacco, peanut, sunflower, soybean, maize, cotton, cranberry, canola, poplar, wheat and rice. CALS researchers Kenneth Raffa, Brent McCown PhD’69 and Elden Stang, as well as WCIC associate director Michael Petersen BS’87 (then still an undergraduate) and Richard Heinzen MS’74, collaborated with Agracetus scientists during that period. But that wasn’t the only significant research taking place. Other studies critical to agricultural improvement focused on cotton fiber quality, transformation process improvements, polymerase chain reaction (PCR) method development, insect and disease resistance and herbicide tolerance. A number of CALS faculty, including Michael Sussman, Richard Amasino and Andrew Bent, were highly involved in consulting with Agracetus in many of these areas.

In 1990, WR Grace Co. acquired full ownership of Agracetus. During the early 1990s, Agracetus ventured into research in DNA vaccines—using an improved “gene gun”—and contracted plant transformation services to others within the industry, including, most notably, the Monsanto Company. Collaborating with biological systems engineering professor Richard Straub PhD’80 (now CALS senior associate dean) and other CALS researchers, the company also worked on producing industrial enzymes in plants.

After successfully generating plants that eventually became commercial products
for Monsanto, including Roundup Ready Soybeans and Bollgard Cotton, the facility was acquired by Monsanto in 1996.

Over the next 20 years, Monsanto used the facility as its primary site for soybean and cotton transformation. Other R&D at the site included corn, canola, wheat, rice and alfalfa transformation, gene expression, molecular testing and seed chipping/genotyping.

The site was considered a “center of excellence” for Monsanto due to its highly innovative employees, high throughput transformation capabilities and ability to consistently perform above and beyond expectations.

In July of 2016, Monsanto relocated a number of remote functions back to its St. Louis headquarters in the interest of business consolidation. In the hope that the Middleton facility would continue to work toward the betterment of agriculture, Monsanto the following December donated it to longtime collaborator the University of Wisconsin– Madison, along with University Research Park.

Not surprisingly, given the long history of CALS involvement, agronomy professor Shawn Kaeppler BS’87 was chosen to serve as facility director.

To Market, to Market

If you’re familiar with the College of Agricultural and Life Sciences (CALS), you no doubt know all about Stephen Babcock and his test that more than 100 years ago revolutionized the dairy industry by providing an inexpensive, easy way to determine the fat content of milk (thus preventing dishonest farmers from watering it down). What you might not know is that his great discovery went unpatented. The only money Babcock received for his invention was $5,000 as part of a Capper Award—given for distinguished service to agriculture—in 1930.

Just years before Babcock received that award, another entrepreneur was hard at work in his lab—and his discovery would break ground not only in science, but also in direct remuneration for the university.

In 1923, Harry Steenbock discovered that irradiating food increased its vitamin D content, thus treating rickets, a disease caused by vitamin D deficiency. After using $300 of his own money to patent his irradiation technique, Steenbock recognized the value of such patents to the university. He became influential in the formation in 1925 of the Wisconsin Alumni Research Foundation (WARF), a technology transfer office that patents UW–Madison innovations and returns the proceeds back to the university.

Discoveries have continued flowing from CALS, and WARF plays a vital role for researchers wanting to patent and license their ideas. But today’s innovators and entrepreneurs have some added help: a new program called Discovery to Product, or D2P for short.

Established in 2013, and co-funded by UW–Madison and WARF, D2P has two main goals: to bring ideas to market through the formation of startup companies, and to serve as an on-campus portal for entrepreneurs looking for help. Together, WARF and D2P form a solid support for researchers looking to move their ideas to market. That was the intent of then-UW provost Paul DeLuca and WARF managing director Carl Gulbrandsen in conceiving of the program.

“The idea of D2P is to make available a set of skills and expertise that was previously unavailable to coach people with entrepreneurial interests,” explains Leigh Cagan, WARF’s chief technology commercialization officer and a D2P board member. “There needed to be a function like that inside the university, and it would be hard for WARF to do that from the outside as a separate entity, which it is.”

D2P gained steam after its initial conception under former UW–Madison chancellor David Ward, and the arrival of Rebecca Blank as chancellor sealed the deal.

“Chancellor Blank, former secretary of the U.S. Department of Commerce, was interested in business and entrepreneurship. D2P really started to move forward when she was hired,” says Mark Cook, a CALS professor of animal sciences. Cook, who holds more than 40 patented technologies, launched the D2P plan and served as interim D2P director and board chair.

With the light green and operational funds from WARF and the University secured, D2P was on its way. But for the program to delve into one of its goals— helping entrepreneurs bring their ideas to market—additional funding was needed.

For that money, Cook and DeLuca put together a proposal for an economic development grant from the University of Wisconsin System. They were awarded $2.4 million, and the Igniter Fund was born. Because the grant was good only for two years, the search for projects to support with the new funds started right away.

By mid-2014, veteran entrepreneur John Biondi was on board as director, project proposals were coming in and D2P was in business. To date, 25 projects have gone through the Igniter program, which provides funding and guidance for projects at what Biondi calls the technical proof of concept stage. Much of the guidance comes from mentors-in-residence, experienced entrepreneurs that walk new innovators down the path to commercialization.

“For Igniter projects, they need to demonstrate that their innovation works, that they’re not just at an early idea stage,” explains Biondi. “Our commitment to those projects is to stay with them from initial engagement until one of three things happen: they become a startup company; they get licensed or we hand them over to WARF for licensing; or we determine this project might not be commercial after all.”

For projects that may not be destined for startup or that need some additional development before going to market, the collaboration between WARF and D2P becomes invaluable. WARF can patent and license discoveries that may not be a good fit for a startup company. They also provide money, called Accelerator funding, for projects that need some more proof of concept. Innovations that may not be ready for Igniter funds, but that are of potential interest to WARF, can apply for these funds to help them move through the earlier stages toward market.

“Some projects receive both Accelerator and Igniter funding,” says Cagan. “Some get funding from one and not the other. But we work together closely and the programs are being administered with a similar set of goals. We’re delighted by anything that helps grow entrepreneurial skills, companies and employment in this area.”

With support and funding from both WARF and D2P, entrepreneurship on campus is flourishing. While the first batch of Igniter funding has been allocated, Biondi is currently working to secure more funds for the future. In the meantime, he and others involved in the program make it clear that the other aspect of D2P—its mission to become a portal and resource for entrepreneurs on campus—is going strong.

“We want to be the go-to place where entrepreneurs come to ask questions on campus, the starting point for their quest down the entrepreneurial path,” says Biondi.

It’s a tall order, but it’s a goal that all those associated with D2P feel strongly about. Brian Fox, professor and chair of biochemistry at CALS and a D2P advisory board member, echoes Biondi’s thoughts.

“D2P was created to fill an important role on campus,” Fox says. “That is to serve as a hub, a knowledge base for all the types of entrepreneurship that might occur on campus and to provide expertise to help people think about moving from the lab to the market. That’s a key value of D2P.”

Over the past two years, D2P, in collaboration with WARF, has served as precisely that for the 25 Igniter projects and numerous other entrepreneurs looking for help, expertise and inspiration on their paths from innovation to market. The stories of these four CALS researchers serve to illustrate the program’s value.

Reducing Antibiotics in Food Animals

Animal sciences professor Mark Cook, in addition to helping establish D2P, has a long record of innovation and entrepreneurship. His latest endeavor, a product that has the potential to do away with antibiotics in animals used for food, could have huge implications for the animal industry. And as he explains it, the entire innovation was unintentional.

“It was kind of a mistake,” he says with a laugh. “We were trying to make an antibody”—a protein used by the immune system to neutralize pathogens—“that would cause gut inflammation in chickens and be a model for Crohn’s disease or inflammatory bowel disease.”

To do this, Cook’s team vaccinated hens so they would produce a particular antibody that could then be sprayed on feed of other chickens. That antibody is supposed to cause inflammation in the chickens that eat the food. The researchers’ model didn’t appear to work. Maybe they had to spark inflammation, give it a little push, they thought. So they infected the birds with a common protozoan disease called coccidia.

“Jordan Sand, who was doing this work, came to me with the results of that experiment and again said, ‘It didn’t work,’” explains Cook. “When I looked at the data, I saw it was just the opposite of what we expected. The antibody had protected the animals against coccidia, the main reason we feed antibiotics to poultry. We knew right away this was big.”

The possibilities of such an innovation—an antibiotic-free method for controlling disease—are huge as consumers demand antibiotic-free food and companies look for ways to accommodate those demands. With that potential in hand, things moved quickly for Cook and Sand. They filed patents through WARF, collaborated with faculty colleagues and conducted experiments to test other animals and determine the best treatment methods. More research was funded through the WARF Accelerator program, and it became clear that this technology could provide the basis for a startup company.

While Cook didn’t receive funds from D2P to bring the product to market, he and Sand used D2P’s consulting services throughout their work—and continue to do so. Between WARF funding and help from D2P, Cook says starting the current company, Ab E Discovery, has been dramatically different from his previous startup experiences.

“D2P is a game changer,” says Cook. “In other cases, there was no structure on campus to help. When you had a technology that wasn’t going to be licensed, you had to figure out where to get the money to start a company. There were no resources available, so you did what you could, through trial and error, and hoped. Now with WARF and D2P working together, there’s both technical de-risking and market de-risking.”

The combination of WARF and D2P has certainly paid off for Cook and Sand. They have a team and a CEO, and are now producing product. Interest in the product is immense, Cook says. He’d like to see the company grow and expand—and stay in Wisconsin.

“It’s been a dream of mine to make Wisconsin a centerpiece in this technology,” Cook says. “I’d like to see the structure strong here in Wisconsin, so that even when it’s taken over, it’ll be a Wisconsin company. That’s my hope.”

Better Corn for Biofuel

Corn is a common sight in Wisconsin and the upper Midwest, but it’s actually more of a tropical species. As the growing regions for corn move farther north, a corn hybrid has to flower and mature more quickly to produce crop within a shorter growing season. That flowering time is determined by the genetics of the corn hybrid.

Conversely, delayed flowering is beneficial for other uses of corn. For example, when flowering is delayed, corn can produce more biomass instead of food, and that biomass can then be used as raw material to make biofuel.

The genetics of different hybrids controls their flowering time and, therefore, how useful they are for given purposes or growing regions. Shawn Kaeppler, a professor of agronomy, is working to better understand those genes and how various hybrids can best fit a desired function. Much of his work is done in collaboration with fellow agronomy professor Natalia de Leon.

“We look across different populations and cross plants to produce progeny with different flowering times,” Kaeppler explains. “Then we use genetic mapping strategies to understand which genes are important for those traits.”

Throughout his work with plant genetics, Kaeppler has taken full advantage of resources for entreprenuers on campus. He has patents filed or pending, and he has also received Accelerator funds through WARF. For his project looking at the genetics behind flowering time, Kaeppler and graduate student Brett Burdo received Igniter funds from D2P as well. The Igniter program has proven invaluable for Kaeppler and Burdo as they try to place their innovation in the best position for success.

“I found the Igniter program very useful, to go through the process of understanding what it takes to get a product to market,” says Kaeppler. “It also includes funding for some of the steps in the research and for some of the time that’s spent. I can’t fund my graduate student off a federal grant to participate in something like this, so the Igniter funding allowed for correct portioning of funding.”

The end goal of Kaeppler’s project is to develop a transgenic plant as a research model and license the technology, not develop a startup company. His team is currently testing transgenic plants to work up a full package of information that interested companies would use to decide if they should license the technology. For Kaeppler, licensing is the best option since they can avoid trying to compete with big agricultural companies, and the technology will still get out to the market where it’s needed to create change.

“In this area of technology transfer, it is important not only to bring resources back to UW but also to participate in meeting the challenges the world is facing with increasing populations,” says Kaeppler. “Programs like D2P and WARF are critical at this point in time to see the potential of these discoveries realized.”

A Diet to Treat Disease

Around the world, about 60,000 people are estimated to have phenylketonuria, or PKU. Those with the inherited disorder are unable to process phenylalanine, a compound found in most foods. Treatment used to consist of a limited diet difficult to stomach. Then, about 13 years ago, nutritional sciences professor Denise Ney was approached to help improve that course of treatment.

Dietitians at UW–Madison’s Waisman Center wanted someone to research use of a protein isolated from cheese whey—called glycomacropeptide, or GMP—as a dietary option for people living with PKU. Ney took on the challenge, and with the help of a multidisciplinary team, a new diet composition for PKU patients was patented and licensed.

“Mine is not a typical story,” says Ney, who also serves as a D2P advisory board member. “Things happened quickly and I can’t tell you why, other than hard work, a good idea and the right group of people. We’ve had help from many people—including our statistician Murray Clayton, a professor of plant pathology and statistics, and the Center for Dairy Research—which helped with development of the foods and with sensory analysis.”

Being at the right place at the right time had a lot to do with her success thus far, Ney notes. “I’m not sure this could have happened many places in the world other than on this campus because we have all the needed components—the Waisman Center for care of patients with PKU, the Wisconsin Center for Dairy Research, the clinical research unit at University of Wisconsin Hospitals and Clinics, and faculty with expertise in nutritional sciences and food science,” she says.

Ney is currently wrapping up a major clinical trial of the food formulations, referred to as GMP medical foods, that she and her team developed. In addition to those efforts, the new diet has also shown surprising promise in two other, seemingly unrelated, areas: weight loss and osteoporosis prevention.

“My hypothesis, which has been borne out with the research, is that GMP will improve bone strength and help prevent fractures, which are complications of PKU,” explains Ney. “I have a comprehensive study where I do analysis of bone structure and biomechanical performance, and I also get information about body fat. I observed that all of the mice that were fed GMP, whether they had PKU or not, had less body fat and the bones were bigger and stronger.” Interestingly, the response was greater in female compared with male mice.

To support further research on this new aspect of the project, Ney received Accelerator funds from WARF for a second patent issued in 2015 titled “Use of GMP to Improve Women’s Health.” Ney and her team, including nutritional sciences professor Eric Yen, are excited about the possibilities of food products made with GMP that may help combat obesity and also promote bone health in women.

“There is a huge market for such products,” says Ney. “We go from a considerably small group of PKU patients who can benefit from this to a huge market of women if this pans out. It’s interesting, because I think I’m kind of an unexpected success, an illustration of the untapped potential we have here on campus.”

Fewer Antibiotics in Ethanol Plants

Bacteria and the antibiotics used to kill them can cause significant problems in everything from food sources to biofuel. In biofuel production plants, bacteria that produce lactic acid compete with the wanted microbes producing ethanol. At low levels, these bacteria decrease ethanol production. At high levels, they can produce so much lactic acid that it stops fermentation and ethanol production altogether.

The most obvious solution for stopping these lactic acid bacteria would be antibiotics. But as in other industries, antibiotics can cause problems. First, they can be expensive for ethanol producers to purchase and add to their workflow. The second issue is even more problematic.

“A by-product of the ethanol industry is feed,” explains James Steele, a professor of food science. “Most of the corn kernel goes toward ethanol and what remains goes to feed. And it’s excellent animal feed.”

But if antibiotics are introduced into the ethanol plant, that animal feed byproduct can’t truly be called antibioticfree. That’s a problem as more and more consumers demand antibiotic-free food sources. But Steele and his colleagues have a solution—a way to block the negative effects of lactic acid bacteria without adding antibiotics.

“We’ve taken the bacteria that produce lactic acid and re-engineered it to produce ethanol,” says Steele. “These new bacteria, then, compete with the lactic acid bacteria and increase ethanol production. Ethanol plants can avoid the use of antibiotics, eliminating that cost and increasing the value of their animal feed by-product.”

The bacteria that Steele and his team have genetically engineered can play an enormous role in reducing antibiotic use. But that benefit of their innovation didn’t immediately become their selling point. Rather, their marketing message was developed through help from D2P and the Igniter program.

“Learning through D2P completely changed how we position our product and how we interact with the industry,” says Steele. And through that work with D2P, Steele plans to later this year incorporate a company called Lactic Solutions. “D2P has helped us with the finance, the organization, the science, everything. Every aspect of starting a business has been dealt with.”

Steele and his collaborators are now working to refine their innovation and ideas for commercialization using Accelerator funds from WARF. Steele’s work, supported by both WARF and D2P, is a perfect example of how the entities are working together to successfully bring lab work to the market.

“There is no doubt in my mind that we would not be where we are today without D2P,” says Steele. “On top of that you add WARF, and the two together is what really makes it so special. There’s nothing else like it at other campuses.”

With such a strong partnership campaigning for and supporting entrepreneurship at UW–Madison, CALS’ strong history of innovation is poised to endure far into the future, continuing to bring innovations from campus to the world. And that is the embodiment of the Wisconsin Idea.

 

Plant Prowess

It may look jury-rigged, but it’s cutting-edge science.

In a back room in the university’s Seeds Building, researchers scan ears of corn—three at a time—on a flatbed scanner, the kind you’d find at any office supply store. After running the ears through a shelling machine, they image the de-kerneled cobs on a second scanner.

The resulting image files—up to 40 gigabytes’ worth per day—are then run through a custom-made software program that outputs an array of yield-related data for each individual ear. Ultimately, the scientists hope to link this type of information—along with lots of other descriptive data about how the plants grow and what they look like—back to the genes that govern those physical traits. It’s part of a massive national effort to deliver on the promise of the corn genome, which was sequenced back in 2009, and help speed the plant breeding process for this widely grown crop.

“When it comes to crop improvement, the genotype is more or less useless without attaching it to performance,” explains Bill Tracy, professor and chair of the Department of Agronomy. “The big thing is phenotyping—getting an accurate and useful description of the organism—and connecting that information back to specific genes. It’s the biggest thing in our area of plant sciences right now, and we as a college are playing a big role in that.”

No surprise there. Since the college’s founding, plant scientists at CALS have been tackling some of the biggest issues of their day. Established in 1889 to help fulfill the University of Wisconsin’s land grant mission, the college focused on supporting the state’s fledgling farmers, helping them figure out how to grow crops and make a living at it. At the same time, this practical assistance almost always included a more basic research component, as researchers sought to understand the underlying biology, chemistry and physics of agricultural problems.

That approach continues to this day, with CALS plant scientists working to address the ever-evolving agricultural and natural resource challenges facing the state, the nation and the world. Taken together, this group constitutes a research powerhouse, with members based in almost half of the college’s departments, including agronomy, bacteriology, biochemistry, entomology, forest and wildlife ecology, genetics, horticulture, plant pathology and soil science.

“One of our big strengths here is that we span the complete breadth of the plant sciences,” notes Rick Lindroth, associate dean for research at CALS and a professor of entomology. “We have expertise across the full spectrum—from laboratory to field, from molecules to ecosystems.”

This puts the college in the exciting position of tackling some of the most complex and important issues of our time, including those on the applied science front, the basic science front—and at the exciting new interface where the two approaches are starting to intersect, such as the corn phenotyping project.

“The tools of genomics, informatics and computation are creating unprecedented opportunities to investigate and improve plants for humans, livestock and the natural world,” says Lindroth. “With our historic strength in both basic and applied plant sciences, the college is well positioned to help lead the nation at this scientific frontier.”

It’s hard to imagine what Wisconsin’s agricultural economy would look like today without the assistance of CALS’ applied plant scientists.

The college’s early horticulturalists helped the first generation of cranberry growers turn a wild bog berry into an economic crop. Pioneering plant pathologists identified devastating diseases in cabbage and potato, and then developed new disease-resistant varieties. CALS agronomists led the development of the key forage crops—including alfalfa and corn—that feed our state’s dairy cows.

Fast-forward to 2015: Wisconsin is the top producer of cranberries, is third in the nation in potatoes and has become America’s Dairyland. And CALS continues to serve the state’s agricultural industry.

The college’s robust program covers a wide variety of crops and cropping systems, with researchers addressing issues of disease, insect and weed control; water and soil conservation; nutrient management; crop rotation and more. The college is also home to a dozen public plant-breeding programs—for sweet corn, beet, carrot, onion, potato, cranberry, cucumber, melon, bean, pepper, squash, field corn and oats—that have produced scores of valuable new varieties over the years, including a number of “home runs” such as the Snowden potato, a popular potato chip variety, and the HyRed cranberry, a fast-ripening berry designed for Wisconsin’s short growing season.

While CALS plant scientists do this work, they also train the next generation of researchers—lots of them. The college’s Plant Breeding and Plant Genetics Program, with faculty from nine departments, has trained more graduate students than any other such program in the nation. Just this past fall, the Biology Major launched a new plant biology option in response to growing interest among undergraduates.

“If you go to any major seed company, you’ll find people in the very top leadership positions who were students here in our plant-breeding program,” says Irwin Goldman PhD’91, professor and chair of the Department of Horticulture.

Among the college’s longstanding partnerships, CALS’ relationship with the state’s potato growers is particularly strong, with generations of potato growers working alongside generations of CALS scientists. The Wisconsin Potato and Vegetable Growers Association (WPVGA), the commodity group that supports the industry, spends more than $300,000 on CALS-led research each year, and the group helped fund the professorship that brought Jeff Endelman, a national leader in statistical genetics, to campus in 2013 to lead the university’s potato-breeding program.

“Research is the watchword of the Wisconsin potato and vegetable industry,” says Tamas Houlihan, executive director of the WPVGA. “We enjoy a strong partnership with CALS researchers in an ongoing effort to solve problems and improve crops, all with the goal of enhancing the economic vitality of Wisconsin farmers.”

Over the decades, multi-disciplinary teams of CALS experts have coalesced around certain crops, including potato, pooling their expertise.

“Once you get this kind of core group working, it allows you to do really high-impact work,” notes Patty McManus, professor and chair of the Department of Plant Pathology and a UW–Extension fruit crops specialist.

CALS’ prowess in potato, for instance, helped the college land a five-year, $7.6 million grant from the U.S. Department of Agriculture to help reduce levels of acrylamide, a potential carcinogen, in French fries and potato chips. The multistate project involves plant breeders developing new lines of potato that contain lower amounts of reducing sugars (glucose and fructose) and asparagine, which combine to form acrylamide when potatoes are fried. More than a handful of conventionally bred, low-acrylamide potato varieties are expected to be ready for commercial evaluations within a couple of growing seasons.

“It’s a national effort,” says project manager Paul Bethke, associate professor of horticulture and USDA-ARS plant physiologist. “And by its nature, there’s a lot of cross-talk between the scientists and the industry.”

Working with industry and other partners, CALS researchers are responding to other emerging trends, including the growing interest in sustainable agricultural systems.

“Maybe 50 years ago, people focused solely on yield, but that’s not the way people think anymore. Our crop production people cannot just think about crop production, they have to think about agroecology, about sustainability,” notes Tracy. “Every faculty member doing production research in the agronomy department, I believe, has done some kind of organic research at one time or another.”

Embracing this new focus, over the past two years CALS has hired two new assistant professors—Erin Silva, in plant pathology, who has responsibilities in organic agriculture, and Julie Dawson, in horticulture, who specializes in urban and regional food systems.

“We still have strong partnerships with the commodity groups, the cranberries, the potatoes, but we’ve also started serving a new clientele—the people in urban agriculture and organics that weren’t on the scene for us 30 years ago,” says Goldman. “So we have a lot of longtime partners, and then some new ones, too.”

Working alongside their applied colleagues, the college’s basic plant scientists have engaged in parallel efforts to reveal fundamental truths about plant biology—truths that often underpin future advances on the applied side of things.

For example, a team led by Aurélie Rakotondrafara, an assistant professor of plant pathology, recently found a genetic element—a stretch of genetic code—in an RNA-based plant virus that has a very useful property. The element, known as an internal ribosome entry site, or IRES, functions like a “landing pad” for the type of cellular machine that turns genes—once they’ve been encoded in RNA—into proteins. (A Biology 101 refresher: DNA—>RNA—>Protein.)

This viral element, when harnessed as a tool of biotechnology, has the power to transform the way scientists do their work, allowing them to bypass a longstanding roadblock faced by plant researchers.

“Under the traditional mechanism of translation, one RNA codes for one protein,” explains Rakotondrafara. “With this IRES, however, we will be able to express several proteins at once from the same RNA.”

Rakotondrafara’s discovery, which won an Innovation Award from the Wisconsin Alumni Research Foundation (WARF) this past fall and is in the process of being patented, opens new doors for basic researchers, and it could also be a boon for biotech companies that want to produce biopharmaceuticals, including multicomponent drug cocktails, from plants.

Already, Rakotondrafara is working with Madison-based PhylloTech LLC to see if her new IRES can improve the company’s tobacco plant-based biofarming system.

“The idea is to produce the proteins we need from plants,” says Jennifer Gottwald, a technology officer at WARF. “There hasn’t been a good way to do this before, and Rakotondrafara’s discovery could actually get this over the hump and make it work.”

While Rakotondrafara is a basic scientist whose research happened to yield a powerful application, CALS has a growing number of scientists—including those involved in the corn phenotyping project—who are working at the exciting new interface where basic and applied research overlap. This new space, created through the mind-boggling advances in genomics, informatics and computation made in recent years, is home to an emerging scientific field where genetic information and other forms of “big data” will soon be used to guide in-the-field plant-breeding efforts.

Sequencing the genome of an organism, for instance, “is almost trivial in both cost and difficulty now,” notes agronomy’s Bill Tracy. But a genome—or even a set of 1,000 genomes—is only so helpful.

What plant scientists and farmers want is the ability to link the genetic information inside different corn varieties—that is, the activity of specific genes inside various corn plants—to particular plant traits observed in the greenhouse or the field. The work of chronicling these traits, known as phenotyping, is complex because plants behave differently in different environments—for instance, growing taller in some regions and shorter in others.

“That’s one of the things that the de Leon and Kaeppler labs are now moving their focus to—massive phenotyping. They’ve been doing it for a while, but they’re really ramping up now,” says Tracy, referring to agronomy faculty members Natalia de Leon MS’00 PhD’02 and Shawn Kaeppler.

After receiving a large grant from the Great Lakes Bioenergy Research Center in 2007, de Leon and Kaeppler decided to integrate their two research programs. They haven’t looked back. With de Leon’s more applied background in plant breeding and field evaluation, plus quantitative genetics, and with Kaeppler’s more basic corn genetics expertise, the two complement each other well. The duo have had great success securing funding for their various projects from agencies including the National Science Foundation, the U.S. Department of Agriculture and the U.S. Department of Energy.

“A lot of our focus has been on biofuel traits, but we measure other types of economically valuable traits as well, such as yield, drought tolerance, cold tolerance and others,” says Kaeppler. Part of the work involves collaborating with bioinformatics experts to develop advanced imaging technologies to quantify plant traits, projects that can involve assessing hundreds of plants at a time using tools such as lasers, drone-mounted cameras and hyperspectral cameras.

This work requires a lot of space to grow and evaluate plants, including greenhouse space with reliable climate control in which scientists can precisely measure the effects of environmental conditions on plant growth. That space, however, is in short supply on campus.

“A number of our researchers have multimillion-dollar grants that require thousands of plants to be grown, and we don’t always have the capacity for it,” says Goldman.

That’s because the Walnut Street Greenhouses, the main research greenhouses on campus, are already packed to the gills with potato plants, corn plants, cranberries, cucumbers, beans, alfalfa and dozens of other plant types. At any given moment, the facility has around 120 research projects under way, led by 50 or so different faculty members from across campus.

Another bottleneck is that half of the greenhouse space at Walnut Street is old and sorely outdated. The facility’s newer greenhouses, built in 2005, feature automated climate control, with overlapping systems of fans, vents, air conditioners and heaters that help maintain a pre-set temperature. The older houses, constructed of single-pane glass, date back to the early 1960s and present a number of challenges to run and maintain. Some don’t even have air conditioning—the existing electrical system can’t handle it. Temperatures in those houses can spike to more than 100 degrees during the summer.

“Most researchers need to keep their plants under fairly specific and constant conditions,” notes horticultural technician Deena Patterson. “So the new section greenhouse space is in much higher demand, as it provides the reliability that good research requires.”

To help ameliorate the situation, the college is gearing up to demolish the old structures and expand the newer structure, adding five more wings of greenhouse rooms, just slightly north of the current location—out from under the shadow of the cooling tower of the West Campus Co-Generation Facility power plant, which went online in 2005. The project, which will be funded through a combination of state and private money, is one of the university’s top building priorities.

Fortunately, despite the existing limitations, the college’s plant sciences research enterprise continues apace. Kaeppler and de Leon, for example, are involved in an exciting phenotyping project known as Genomes to Fields, which is being championed by corn grower groups around the nation. These same groups helped jump-start an earlier federal effort to sequence the genomes of many important plants, including corn.

“Now they’re pushing for the next step, which is taking that sequence and turning it into products,” says Kaeppler. “They are providing initial funding to try to grow Genomes to Fields into a big, federally funded initiative, similar to the sequencing project.”

It’s a massive undertaking. Over 1,000 different varieties of corn are being grown and evaluated in 22 environments across 13 states and one Canadian province. Scientists from more than a dozen institutions are involved, gathering traditional information about yield, plant height and flowering times, as well as more complex phenotypic information generated through advanced imaging technologies. To this mountain of data, they add each corn plant’s unique genetic sequence.

“You take all of this data and just run millions and billions of associations for all of these different traits and genotypes,” says de Leon, who is a co-principal investigator on the project. “Then you start needing supercomputers.”

Once all of the dots are connected—when scientists understand how each individual gene impacts plant growth under various environmental conditions—the process of plant breeding will enter a new sphere.

“The idea is that instead of having to wait for a corn plant to grow for five months to measure a certain trait out in the field, we can now take DNA from the leaves of little corn seedlings, genotype them and make decisions within a couple of weeks regarding which ones to advance and which to discard,” says de Leon. “The challenge now is how to be able to make those types of predictions across many environments, including some that we have never measured before.”

To get to that point, notes de Leon, a lot more phenotypic information still needs to be collected—including hundreds and perhaps thousands more images of corn ears and cobs taken using flatbed scanners.

“Our enhanced understanding of how all of these traits are genetically controlled under variable environmental conditions allows us to continue to increase the efficiency of plant improvement to help meet the feed, food and fiber needs of the world’s growing population,” she says.

Sidebar:

The Bigger Picture

Crop breeders aren’t the only scientists doing large-scale phenotyping work. Ecologists, too, are increasingly using that approach to identify the genetic factors that impact the lives of plants, as well as shape the effects of plants on their natural surroundings.

“Scientists are starting to look at how particular genes in dominant organisms in an environment—often trees—eventually shape how the ecosystem functions,” says entomology professor Rick Lindroth, who also serves as CALS’ associate dean for research. “Certain key genes are driving many fantastically interesting and important community- and ecosystem-level interactions.”

How can tree genes have such broad impacts? Scientists are discovering that the answer, in many cases, lies in plant chemistry.
“A tree’s chemical composition, which is largely determined by its genes, affects the community of insects that live on it, and also the birds that visit to eat the insects,” explains Lindroth. “Similarly, chemicals in a tree’s leaves affect the quality of the leaf litter on the ground below it, impacting nutrient cycling and nitrogen availability in nearby soils.”

A number of years ago Lindroth’s team embarked on a long-term “genes-to-ecosystems” project (as these kinds of studies are called) involving aspen trees. They scoured the Wisconsin landscape, collecting root samples from 500 different aspens. From each sample, they propagated three or four baby trees, and then in 2010 planted all 1,800 saplings in a so-called “common garden” at the CALS-based Arlington Agricultural Research Station.

“The way a common garden works is, you put many genetic strains of a single species in a similar environment. If phenotypic differences are expressed within the group, then the likelihood is that those differences are due to their genetics, not the environment,” explains Lindroth.

Now that the trees have had some time to grow, Lindroth’s team has started gathering data about each tree—information such as bud break, bud set, tree size, leaf shape, leaf chemistry, numbers and types of bugs on the trees, and more.

Lindroth and his partners will soon have access to the genetic sequence of all 500 aspen genetic types. Graduate student Hilary Bultman and postdoctoral researcher Jennifer Riehl will do the advanced statistical analysis involved—number crunching that will reveal which genes underlie the phenotypic differences they see.

In this and in other projects, Lindroth has called upon the expertise of colleagues across campus, developing strategic collaborations as needed. That’s easy to do at UW–Madison, notes Lindroth, where there are world-class plant scientists working across the full spectrum of the natural resources field—from tree physiology to carbon cycling to climate change.

“That’s the beauty of being at a place like Wisconsin,” Lindroth says.

Want to help? The college welcomes your gift toward modernizing the Walnut Street Greenhouses. To donate, please visit: supportuw.org/giveto/WalnutGreenhouse. We thank you for your contribution.
Continue reading