From Space to the Field

Images captured from satellites orbiting 440 miles above the Earth tell a powerful, richly detailed story about crop yields—revealing the lushness or deficits of fields with surprising precision.

With the help of about 100 farmers so far as part of a citizen science project, researcher Phil Townsend and his team hope to coax even more valuable information from the satellite photos and change how farmers’ yields are reported and analyzed.

“The reporting of crop yields is now done at the county level with information confidentially reported by farmers to the USDA,” says Townsend, a professor of forest and wildlife ecology. “Counties can be very large. We now have the ability to analyze yields at the field level with these images, giving us much more accurate and granular data.”

By tracking the greenness of fields from the satellites and analyzing climate data, researchers hope to identify impacts of insect pests, crop diseases and weather events like frost, tornados or hail.

First, however, they needed to test their yield estimates against farmers’ actual yields. So Townsend’s team developed a website—yieldsurvey. wisc.edu—that allows researchers to confidentially crowdsource crop yield information. Townsend is encouraging even more submissions.

Farmers can enter their field’s location by dropping pins on a Google map, along with the type of crop and the actual crop yield for as many seasons as possible. The information is then analyzed and compared to estimates developed in Townsend’s lab.

“Our yield estimates are within about 15 percent of what the farmers report,” Townsend says. “Our target is to get that down to 10 percent. If you’re a farmer, the closer you can get to that could be the difference between making money and breaking even.”

Citizen science is a two-way street—it helps researchers tweak their estimates based on real data, and those more accurate numbers can help farmers be more productive and better managers.

Ultimately, Townsend says, the satellite technology and climate data, refined by knowing the actual yields from participating farmers, have the potential to predict crop yields well before harvest time.

Farmers see promise in the new approach, says Kevin Erb, a UW–Extension agronomist based in Green Bay.

“Farmers benefit from using remote sensing technology,” Erb says. “If we know early in the season that we have the potential for above-average yields, that can affect the types of pesticides and fertilizers that you use during the season.”

Being able to make decisions during the season based on this sort of predictive data could increase profits $50 or more per acre, Erb says.

Townsend’s team is cooperating with the USDA and hopes to snag funding to broaden the project. The effort is an example of the Wisconsin Idea at work, Townsend says.

“We have to connect with our constituents, and that’s where crowdsourcing and citizen science comes into play,” he says. “Farmers are participating in the science, and they see the benefits. It’s building trust.”

IMAGE: This map looking at soybean crops in the Upper Midwest shows how yields are predicted to vary even within the same county. Researchers are trying to verify their estimates by working with farmers to determine their actual yields.
Courtesy of Aditya Singh/UW–Madison CALS

Meet the Scourge

IT IS AN INSECT LITTLE BIGGER THAN A GRAIN OF RICE. But the invasive emerald ash borer may as well be Godzilla for all the chaos it has brought to the Upper Midwest’s forested landscapes.

The borer has already laid ruin to the ash that dominated urban and lowland forests in Michigan, where it first turned up near Detroit in 2002, likely a hitchhiker on wooden shipping pallets from China. And in dozens of Wisconsin villages and cities, street terraces are marked by the stumps of ash trees already removed because of infestation.

The Wisconsin Department of Natural Resources says the borer has killed more than 50 million ash trees and is now found in a dozen states, including more than 30 counties in Wisconsin. Though it is not a threat to human health, the ash borer’s inevitable spread is likely to dramatically change the face of both urban and state and national public forests. The insect has already cost Wisconsin communities millions of dollars as they prepare for its assault and as they begin to remove and treat infested and threatened trees.

And it has proven a massive challenge to researchers—including entomologists at CALS—as they bring science to bear on understanding and slowing the march of the tiny, tree-killing insect and reducing its impact where it is established.

CALS entomologist Chris Williamson, who has studied the insect since 2003, says the word “cataclysmic” is not too strong to describe the eventual devastation that will be wrought by the emerald ash borer.

“The emerald ash borer means the demise of ash trees in North America,” says Williamson, who is also a UW–Extension specialist.

His colleague, CALS entomologist Ken Raffa, has researched and introduced parasitic wasps as potential predators that might help at least slow the insect’s steady march across the continent. But Raffa also said there is little doubt that such efforts are mostly holding actions against a foe that cannot be stopped.

“The genie is out of the bottle,” Raffa says.

Even so, in the face of what seems to be nothing but bad news, research at CALS and elsewhere has provided weapons that are proving effective at slowing the insect, giving communities time to plan and homeowners the ability to treat and possibly save treasured trees with insecticides.

In fact, Williamson, surveying a stand of ash trees he has treated and studied at Warner Park on Madison’s North Side, says he actually gets irked when someone says there’s nothing that can be done to save an ash tree. He has spent long hours in the field, testing various insecticides. And he has found that treating an ash tree early enough and repeating that treatment every couple of years can save even large, prized trees that homeowners want to protect. Insecticides such as emamectin benzoate, marketed under the brand name “TREE-age,” have also given urban foresters an effective tool to slow the loss of ash and temper the impact on a community’s cooling leaf canopy.

Treatment has also been found to be less expensive than was originally anticipated. Experts with Arborjet, a company that has worked with a number of communities on treatment, says that an injection treatment, in which the insecticide is shot into the tree through holes bored in the bark, costs on average $50 to $60 every two years for municipalities. The cost is more for individual homeowners, according to Arborjet, but still cheaper than removal and replacement.

Research by Williamson and others has shown that when it comes to protecting an ash from the voracious borer, action must be taken.

“If you have an ash tree you want to preserve and you don’t treat it, it will die,” says Williamson.

WHAT MAKES the emerald ash borer, also known as EAB, such an effective killer?

First, it is an invasive species. As such, it arrived on our shores to find it had won the insect lottery—millions of acres of tasty ash, no natural enemies poised to make a dent in its growing populations, and ash trees with no natural defense against the feeding larvae.

Added to this deadly mix of traits, according to Williamson, is the insect’s near invisibility at the early stages of infestation. The flying insect is only about an eighth of an inch wide, he says, and it lays its eggs high in a tree’s upper branches. The larvae emerge within a month, bore through the tree’s bark and begin feeding on the soft wood beneath, creating a crazy map of looping trails. All of this—from the infestation by flying adults high in the tree to the burrowing by larvae beneath the bark—is nearly impossible to spot, Williamson says. The only way to detect an infestation is through a laborious process of peeling away the outer bark of a tree and looking for the telltale trails left by the gnashing larvae. Unfortunately, by the time such evidence is found, it is too late to save the tree.

This cloak of invisibility, Williamson says, has made the borer a particularly deadly foe. Entomologists have estimated that, based on the extent of the damage to ash stands in Michigan, the borer had been dining on trees for nearly a decade before its presence was discovered, notes Williamson.

In the interim, the larvae were fatally damaging the ash trees’ inner tissues, or cambium, the layers of the tree that carry food down to the roots and water and nutrients up to the leaves.

“It’s like me going to your house without you knowing it and destroying your plumbing,” says Williamson.

Williamson notes that if the tree’s cambium is significantly damaged as a result of the feeding larvae, treatment is likely futile. “They’ve destroyed the conductive tissues,” he says.

While Williamson has focused on the study of insecticides, Raffa has worked to find predators that might help slow the borer.

Researchers with the U.S. Department of Agriculture studying the insect in 2003 in its native China haunts found parasitic wasps that feed on the ash borer larvae, Raffa notes. Scientists narrowed their focus to three species that they concluded might be effective and would not attack native insects. Eight states released these parasitic stingless wasps between 2007 and 2010, and in 2011 Raffa, researchers from his laboratory, and members of state agencies cooperatively released specimens of the three species at Wisconsin’s Riveredge Nature Center, near Newburg.

Raffa felled four infested trees in 2013, sectioned the logs and searched for wasps. He found that one species had survived and thrived.

“We knew they had established a population,” says Raffa. “There’s no doubt they were killing ash borers because that’s all they feed on.”

Now more of the wasps are being released by DNR pest specialists. But Raffa warns that, with the rapid spread of the ash borer, it is too late to hope that the wasps will have an immediate impact. Rather, Raffa says, the wasps may multiply and provide control after this initial, destructive wave of ash borer activity. Once the ash borer destroys much of its food source, the wasps may have a better shot at keeping their numbers in check.

“Their numbers are inadequate to affect this first big wave,” Raffa says. “I’m hoping the wasps will be there to kick EAB when it’s down.”

Raffa adds that other researchers, including scientists at Ohio State University, are searching for and studying ash trees that survive the first ash borer attacks. Such trees may offer hope because of a natural resistance that, once understood, could be bred into a new borer-resistant strain of ash.

The problem, both Williamson and Raffa say, is that such science takes time. “And time is not our friend here,” notes Williamson.

Most effective in the short term at slowing the spread are DNR rules aimed at preventing the movement of firewood around the state. Raffa says the insect does not travel far on its own, and that the insect spread through the state is due mostly to its hitching rides on firewood.

A federal and state quarantine on counties where the ash borer is present requires tree nurseries and the wood industry to take precautions that prevent the spread of the borer in nursery stock or logs (see map on page 20). General public restrictions for bringing firewood onto state properties are posted here.

AT STAKE ARE extensive stands of ash that most communities planted in the wake of another tree calamity—Dutch elm disease. Often cited as being similar in impact to the emerald ash borer’s spread, Dutch elm disease first appeared in the late 1920s and moved steadily across the continent through the 1970s. Caused by a fungus and spread by bark beetles, the disease killed 77 million of the much-beloved American elms between 1930 and 1989. Lost in that disaster were the beautiful urban tree stands that graced so many city and village streets, creating cathedral-like arches of shade.

In the wake of that loss, urban foresters planted millions of green
and white ash trees. They grew fast, adapted well to urban growing conditions and resisted droughts. Madison’s streets, for example, are lined with ash. The city’s forestry department estimated that 21,700 of its publicly owned trees are ash. Thousands more are found in parks and on private property. Milwaukee has more than 30,000 ash trees lining its streets.

Statewide, Wisconsin has more than 770 million ash trees, according to the DNR’s forestry division. That’s 7 percent of the total tree population, and they dominate lowland forests. In the state’s urban areas, according to the agency, 20 percent of street trees are ash.

Wisconsin ecological pioneer Aldo Leopold observed that disturbing one part of an ecosystem often has powerful and far-removed consequences. So it is with the loss of the state’s ash trees, according to forestry experts. The loss of a large percentage of a community’s tree canopy can lead to everything from more flooding to increased energy bills for homeowners, according to Marla Eddy, Madison’s city forester.

In a 2004 study of urban trees in Minneapolis, researchers with the U.S. Forest Service found that the benefits of landscape trees dramatically exceed the costs of planting and care over their lifetime. Each year, the study found, 100 shade trees catch about 216,200 gallons of rainwater and remove 37 tons of carbon dioxide as well as 259 pounds of other pollutants.

The researchers calculated that one well-placed large tree provides an average savings of $31 in home energy costs each year. And trees add value to a home, according to the study, which found that each large front yard tree adds 1 percent to the sales price of a house. Big trees can add 10 percent to property value.

So losing such a large percentage of the tree canopy in a community is about more than just appearances. That’s why Milwaukee has chosen to treat as many as 28,000 of its 33,000 trees—to slow the loss of ash and keep as much of the canopy in place as possible as infested trees are removed.

In communities that were hit early by emerald ash borer, saving trees has been more difficult. In Oak Creek, just outside Milwaukee, EAB was discovered in November 2009, making it ground zero for the borer’s assault on Wisconsin. In the absence of tested pesticides at the time, the city started an ambitious removal and replacement program aimed at getting new trees up as soon as possible, according to Rebecca Lane, Oak Creek’s urban forester.

In fact, Lane, in anticipation of the insect’s arrival, had already been taking steps to protect the canopy. “When we heard about EAB, I almost immediately stopped planting ash trees,” Lane recalls. Of the city’s 10,000 street trees, 1,500 were ash. Of these, 750 have been removed and 750 are under treatment. “As treatments became deemed dependable, we began to use insecticides for long and short-term ash treatments,” notes Lane.

Other communities, too, have been able to take advantage of insecticides that have proven effective, thanks to the work of Williamson and other researchers.

Madison is treating all healthy street trees 10 inches in diameter or larger, and anticipates saving as many as 60 percent of its street ash tree population, according to city forester Eddy.

“We have to think long-term,” says Karl van Lith, organizational development and training officer for the city of Madison. “We’re thinking about the tree canopy for the next generation.”

WHILE RESEARCHERS have provided some help for urban forests, the more dense stands of ash in county, state and national forests will be much harder to save, according to Andrea Diss-Torrance, a plant pest and disease specialist with the Wisconsin Department of Natural Resources.The chemical treatments used in urban forests require application to individual trees, which is impossible when you’re talking about entire forests. Williamson says some research has looked at the effectiveness of aerial spraying a specific strain of Bacillus thuringiensis, similar to a bacterial strain used to control gypsy moth caterpillars. The pathogen is sprayed over the canopy and kills flying adults.

The practice remains limited, Williamson says, and comes with its own set of problems, not the least of which is the potential environmental impact of widespread spraying, as opposed to the controlled treatment of individual trees.

The bottom line is that saving extensive stands of ash trees in Wisconsin’s public forests is going to be very difficult, acknowledges Diss-Torrance. “Our forests are going to be greatly changed,” she says.

Diss-Torrance confirms that, just as the loss of urban ash trees will have environmental impacts, the death of thousands of forest trees is likely to cause damaging changes to the state’s forest ecosystems.

Of special concern are lowland forests, such as black ash swamps. Research has already shown that the loss of black ash in these wetland areas can result in a rise in water levels because the trees are no longer there to soak up the water. That change, in turn, results in the growth of problem species such as reed canary grass, which muscles out other plants and so changes the wetland that it is no longer able to support its native cohort of plants and creatures, from amphibians to insects.

“You end up with very different communities,” Diss-Torrance says. The loss of black ash would be

keenly felt by several of Wisconsin’s Native American tribes, which have traditionally used the supple wood of the ash to make baskets for storing food.

“These baskets have always been a symbol of home and abundance,” Diss-Torrance says. “They’re central to the harvest and to Native tradition.”

In southern Wisconsin, green ash is prominent among the trees that line lakes, rivers and wetlands.

“We have a lot of lakes and a lot of wetland areas,” Diss-Torrance notes. “And they’re all dominated by green ash. Those trees help stabilize banks. What happens when they fall into the water?”

So the stakes are high as the battle continues against this tiny foe.

Williamson is spending less time on borer-related research but continues to spread the word about the use of insecticides—and he still spends a lot of time consulting with communities as they battle the insect.

In fact, Williamson says, with considerable misinformation circulating, the job of educating the public about the insect has been an important task of CALS scientists. He figures that between 2003 and 2013, he gave nearly 170 talks about the emerald ash borer.

One important lesson to come from the ash borer, Williamson says, is the need to diversify an urban forest’s population. It’s a lesson that should
have been learned after the spread of Dutch elm disease, he notes. Now the rule of thumb is that no single species should represent 10 percent or more of a community’s total tree inventory.

Both Eddy, the city forester in Madison, and Lane, her counterpart in Oak Creek, say creating that diversity in their plantings is a priority in the wake of the emerald ash borer.

Both also say that the disastrous spread of the insect has given them new insight into the touching connections between people and the natural world, especially their attachment to the beauty and solace of trees.

“That human factor is so much larger than I thought when I first started doing this,” says Lane. “I thought of this as mostly a technical career.”

But around Yahara Place Park, on Madison’s near East Side, neighbors have seen ash trees beginning to fall and have decided to mobilize to protect what trees they can, according to Paul Nichols, one of the neighborhood organizers.

He and others went door to door collecting money to pay for treatment of healthy ash trees in the park alongside Lake Monona. Storms have recently roared through and destroyed a number of towering cottonwoods. So the remaining ash trees—about 22—took on added significance. Nichols and others took advantage of the city’s “Adopt-a-Park Tree” program—which allows residents to pay for treatment of treasured park trees—to make sure that the ash got treated.

Why make such an effort? Nichols, strolling the park on a pleasant summer morning, pointed to the stumps of the removed trees and recalled the beauty of the big trees and their arched branches—old friends that were once visible from the front window of his home.

Nichols and others say they miss the trees and understand they may not be around when the ash that are saved grow to maturity. But, he adds, they know that others will someday know and appreciate the view of the blue lake framed between stately trunks, or the pleasure of sitting beneath a shady canopy on a lazy summer afternoon.

“What we’re really talking about,” Nichols says, “is doing something for the generations to come.”

To the Ends of the Earth

In April 2011, James Bockheim led a small team of researchers to a rocky spit of land called Cierva Point, a habitat protected by the Antarctic Treaty as a “site of special scientific interest.” Home to breeding colonies of bird species like Gentoo penguins, as well as a remarkably verdant cover of maritime plants, Cierva Point is also one of the most rapidly warming places on Earth.

Bockheim and his crew were beginning another field season on the Antarctic Peninsula, the long finger of rock and ice that snakes past Palmer Station, the United States’ northernmost Antarctic research station, and curls out in the Southern Ocean (see map, page 25). They’d been deposited onshore, along with their gear, by the Laurence M. Gould, a research vessel that wouldn’t return until late May. As the ship sailed back into the frigid sea, Bockheim turned his attention not to penguins or polar grasses, but to the ground beneath his feet.

Every year there was more and more of that ground as glaciers drained into the Southern Ocean, revealing soils and bedrock that had been covered in ice for millennia. Bockheim wanted to know what was going on underneath the newly exposed surface and had brought along a soil and bedrock coring tool, a device that looks like a cartoonishly oversized power drill, to get to the bottom of it.

His crew fitted the drill with its two-meter-long impact hammer bit. Graduate student Kelly Wilhelm pointed the drill at the ground and pulled the trigger.

It wouldn’t be the first time that Antarctica caught Bockheim by surprise. Bockheim, a CALS professor of soil science, has spent his career studying polar and alpine soils. From field sites north of the Arctic Circle to mountain passes in the Andes and the dry valleys of Antarctica, Bockheim has worked to classify and understand how soils are formed in the Earth’s coldest climates.

Bockheim first set foot on Antarctic soil in 1969 as a Ph.D. candidate at the University of Washington. Although his dissertation was on alpine soils in the Cascades, his advising professor had a project in Antarctica and invited him to come along.

“And that was it,” Bockheim recalls. “It just got in my blood.” Startled by the “peace, solitude and stark beauty,” he knew he would have to return.

Six years after that first trip, Bockheim got his chance. He had recently accepted a position at the University of Wisconsin–Madison when a call came in asking if he’d like to join a glacial geologist from the University of Maine on a multiyear research project in Antarctica’s dry valleys. Bockheim’s reply was succinct: “Absolutely.”

Over the next 12 years, Bockheim returned to Antarctica each year for a two-month stint of digging out soil profiles, collecting samples and boring holes into the continent’s surface, especially in the largest ice-free region of Antarctica, the McMurdo Dry Valleys.

It was during this time that Antarctica presented Bockheim with its first riddle. The dry valleys are a “polar desert,” a system that rarely gets above freezing and, even when it does, contains precious little water.

As in other places with permafrost—soils that stay at or below freezing for two or more years at a time—soils there are primarily formed by cryoturbation. Also called “frost churning,” cryoturbation is a process by which what scant ice there is freezes and then thaws year after year, breaking up bedrock, working surface particles down into the ground and bringing buried particles up. Such mixing is never a quick process, but in the dry valleys of Antarctica it occurs at an especially glacial pace.

The resulting material didn’t exactly fit what Bockheim knew to be the generally accepted definition of soil. While the weathered substrate had been eroded and deposited in layers over millions of years, it often looked more like a combination of loose pea gravel and sand. What’s more, only lichen and mosses were found growing in it, not the “higher plants” usually considered a prerequisite for soil status.

But to Bockheim, that requirement was a relic of soil taxonomy’s tendency to classify soils based on what human uses they could sustain, like crop production or road building. In Antarctica, such endeavors were a moot point.

In a 1982 paper published in the journal Geoderma, Bockheim made his first mention of these polar soils in the scientific literature. The journal’s editor, anticipating pushback from other soil scientists, urged him to first define the word “soil” for his readers. Bockheim produced a definition similar to the existing one, with one small change— “higher plants” were nowhere to be found. It was the opening salvo in a scientific debate that would simmer for more than a decade.

By 1987, after 12 uninterrupted years of spending field seasons in Antarctica, Bockheim decided he needed a break. He was tired of leaving his wife and five young daughters back in Madison for two months at a time and wanted to stay closer to home. While the move shifted his focus to the forest soils of northern Wisconsin, Bockheim continued to publish papers on his research on Antarctic soils.

Then, in 1992, the Soil Conservation Service (now the Natural Resources Conservation Service) took note of Bockheim’s argument that the existing classification system didn’t do polar soils justice. He was asked to lead a committee discussing the need for a new order of soil. The result, after a few years of lively debate, was the addition of Gelisols, or “permanently frozen soils,” to the USDA catalog of soil types.

“These soils were far away, poorly researched, and people thought they might be insignificant because we couldn’t grow anything on them,” says Bockheim’s colleague, CALS soil science professor Alfred Hartemink. “But with time came knowledge, and it was recognized that this is a large part of the world, and soils were being classified there incorrectly.”

The soil classification system had been set at 10 distinct orders of soil for so long, Hartemink says, that the change “was a bit like adding another month to the year. But Jim was able to build that body of knowledge, consolidate it and pull it off. That was an immense deal.”

It was an impressive first half of a career. In fact, it would be an impressive list of accomplishments for any scientist’s entire career.

But Bockheim isn’t just any scientist. He has spent 20 tours of scientific duty in Antarctica, 19 field seasons in the Arctic Circle and several in alpine ecosystems across the world’s mountain ranges. He recently returned from a two-month trip to South America, where he’d received a Fulbright grant to teach classes on Antarctic soils in Chile and a special invitation to teach a similar class in Brazil. During that visit he took a side trip to the Andes, where one of his graduate students deployed tiny temperature probes, called thermistors, into the frigid soils.

Even in more domestic climes—say, the stairwells of King Hall, home of the Department of Soil Science on the UW–Madison campus—Bockheim bounds down the stairs from his office to his lab. “Fit college students sometimes have a hard time keeping up with him in the field,” says Kelly Wilhelm, who has spent two field seasons with Bockheim in the Antarctic.

That energy carries over into the more cerebral part of his profession. Bockheim has authored 170 scientific articles, and his work is cited by other scientists at a rate almost unheard of in soil science circles.

“Jim wrote three books in two years,” notes Hartemink. “Who does that? Most scientists write one every five, maybe 10 years. I can’t think of anyone else who could do that.”

The books—Soil Geography of the U.S.A., Cryopedology and The Soils of Antarctica, the latter two coming from the publishing house Springer within the next year—promise to serve as definitive works in the field.

So it’s not just fit college students who can’t keep up. Bockheim is considered by many to be one of the top cryopedologists—scientists who study frozen soils—in the world.

Ironically, after all of his painstaking work describing how polar soils had come into their ancient, frozen state and, quite literally, putting them on the map, many of the Gelisols Bockheim had worked to have reclassified began changing—their defining characteristics melting away.

“We’re literally losing these soils,” says Hartemink. “There are soils disappearing just like there are species disappearing.”

The question now is: What happens when the world’s “permanently frozen” soils begin to thaw?

Bockheim first began asking that question nearly 20 years ago, when he again received an offer he couldn’t refuse. This time, however, it was an invitation to study the opposite pole.

In 1995, after several years focused on his growing family and the soils of Wisconsin, Bockheim returned to polar soils, assuming command of a project focused on permafrost 320 miles north of the Arctic Circle, near Barrow, Alaska. Knowing where different soil types were located and how they’d gotten there, Bockheim knew, was the first step in trying to predict what they’d do as they warmed.

Understanding the fate of permafrost in a warmer world may be one of the most crucial pieces of the climate change puzzle. For millennia, the hard layer of frozen soil has contained vast amounts of carbon and methane, which contribute to greenhouse gas levels when they are released into the atmosphere. As Earth warms, so does this soil, pushing the permafrost line deeper and freeing up more and more soil to release carbon and methane via processes like erosion or microbial activity.

In 2004, the New Zealand Antarctic program was starting a mapping project and wanted Bockheim’s expertise to help add Antarctic soils to their efforts.

Bockheim jumped at the chance to reconnect with the continent he’d first fallen for, but Antarctica surprised him again. The place he returned to looked nothing like the one he remembered.

Handheld GPS devices didn’t exist during Bockheim’s first foray into Antarctic fieldwork in the 1970s. Scientists instead relied on landmarks like mountain peaks, glaciers or snowbanks to lead them back to their annual field sites. Bockheim’s team relied on snowbanks that dotted the dry valley landscape, set down in distant, less arid eras. Using aerial photographs and topographic maps, the team could work out roughly where each site was located.

But 30 years after those pictures had guided him, they’d been rendered obsolete by more than updated technology. “I had taken a picture of snowbanks from the helicopter in 1975,” Bockheim recalls, “and it’s just by chance that, when I went back in 2004, I took a picture from the exact same spot in the air. But the snowbanks were gone.”

Of course Bockheim wasn’t caught completely off guard by these developments. Like any scientist studying the poles, he knew that temperatures over the last four decades had been rising. In fact, at Antarctica’s Palmer Station, the mean annual air temperature was up three and a half degrees Celsius. In winter, the mean temperature during that span had risen nearly 10 degrees Celsius, or 18 degrees Fahrenheit. Even so, the magnitude of the observed changes was startling. “There was water everywhere,”

Bockheim remembers. “I’ve got a whole shelf of field books and I take notes on things like the weather and conditions. In December it would always still be extremely cold.”

During his first 12 years working in Antarctica, he says, “there was always a stream in one of the valleys and maybe some smaller lateral streams that would run in the warmest time of the year, from mid-December to mid-January. But when we went back in 2004, it was so warm that there was just water everywhere, even on the high mountain slopes. There were wet patches of snowmelt coming down the slopes.”

Where areas on the Antarctic Peninsula had once thawed for two months of the year, they were now above freezing for up to five months. That warmth and the water had rejuvenated processes like the pattern of ground freeze from cryoturbation, Bockheim recalls. There was highly developed soil becoming exposed.

The only thing that was as he had left it 17 years prior was Bockheim’s own energy and enthusiasm for Antarctic fieldwork.

Malcolm McLeod, now a soil scientist with the New Zealand–based institute Landcare Research, spent three field seasons on the project mapping Antarctic soils with Bockheim. Bockheim soon became McLeod’s doctoral advisor. “Because of his wealth of Antarctic experience, he was able to focus on the important bits of the soils puzzle that told a story,” McLeod recalls. “He worshiped data, and he had this line—‘Soils never lie.’”

During their project, that mantra led Bockheim to make what McLeod calls “big advances” in scientists’ understanding of how Antarctic soils form. Antarctic glaciers are “cold glaciers,” meaning they don’t melt. They advance when large chunks break off the leading edge, and they retreat by ablation, or evaporating straight from their frozen state into the cold, dry air. As a result, the Antarctic landscape has none of the usual telltale signs glaciers leave behind to provide a history of the region’s geology. Bockheim showed that soils could tell the story.

Bockheim’s wealth of experience also carried over into field camp. “His breakfast bacon and hash browns couldn’t be beat,” says McLeod. “I also remember his ‘hot towel’ dispensed airline-style each morning by dipping a paper towel into a billy of hot water.”

Nearing the two-decade mark of fieldwork in the Antarctic, Bockheim had become both an accomplished scientist and a veteran polar explorer. But after so many years in the polar desert, his mind began to wander to greener pastures.

“I’d done all my work in Antarctica in the dry valleys in the interior mountains, and I kept hearing that the peninsula was quite a different environment,” Bockheim says. “On the peninsula, it’s a whole different world. You have rain, whereas, historically, no one has ever experienced rain in the dry valleys. That rain causes accelerated soil formation and there are plants, a lot of lichens and mosses, but also there are two higher plants, one a grass and the other a member of the pink flower family.”

What would this greener landscape mean? Was Antarctic soil seeing an increase in the “active,” or unfrozen, layer of soil? Was the permafrost being pushed deeper below ground? Bockheim knew that the peninsula would be the best place to study how the warming he was witnessing was impacting Antarctica.

“So I wrote a proposal and decided to strike out on my own rather than being under someone else’s research priorities,” he says. That proposal led Bockheim to Cierva Point with a gigantic power drill in 2011. It was the reason Kelly Wilhelm was bent over the soil driving a two-meter-long bit into the ground. And it was the beginning of addressing yet another Antarctic riddle.

“We are trying to be one cog in looking at how climate change is affecting the Antarctic Peninsula,” says Wilhelm. “There are people looking at air temperature and changes in weather patterns. Other people are looking at how far south the vascular plants grow, or migration patterns of seals and penguins. But permafrost—on the peninsula, at least—has pretty much been one of the last things to be examined.”

When Bockheim headed to the Antarctic Peninsula, the only prior information his team had to go on was a soil survey conducted in the 1960s during April, the warmest month of Antarctica’s short summer. On that survey, researchers dug 40 centimeters into the soil, or less than half a meter, before hitting hard permafrost.

Bockheim’s team knew that the permafrost would now be deeper, as surface soils warmed with the surrounding air temperatures. They had prepared for the change by bringing drill bits that would bore into the soil more than four times deeper than the last known permafrost.

It wasn’t enough.

“Not one of our holes hit permafrost,” Wilhelm recalls. What’s more, the temperature at the bottom of every hole was well above freezing, suggesting that the permafrost was located several meters beyond the reach of their drill.

If soils never lie, what is the unexpectedly warm peninsula trying to say? “That is the grand unsolved question,” Bockheim says. “Based on the latitude, we expected the active layer to be thinner,” which would have meant a much shallower permafrost table. Bockheim says that the distribution of sea ice and westerly flows of air and sea- water may play a role, but—so far—they can’t explain it.

“It’s what we’re writing papers on right now,” says Wilhelm. “People don’t even know about this. It’s a pretty new thing.”

Whatever the answer, one fact is undeniable. The seasonal thaw, or “active” layer of polar soils, is increasing. That means that more and more soil near the Earth’s poles is being grown over with plants, worked over by microbes and eroded by wind and rains. In the Arctic, this activity will undoubtedly lead to the release of carbon and methane, making it a huge source of those greenhouse gases.

In the Antarctic, though, the picture is still fuzzy and may in fact produce an effect that is, well, the polar opposite. The plants beginning to carpet Antarctic soils could end up pulling carbon dioxide out of the atmosphere instead of adding to the problem like the Arctic’s melting permafrost.

“In the Antarctic, with its increased land mass, increased plant cover and, presumably, increased photosynthesis, one could easily argue that it could become a sink for atmospheric carbon,” says Bockheim. And, in fact, that’s exactly what Bockheim thinks will occur—at least temporarily.

Beyond that, the man who wrote the book on Antarctic soils is content to wait and see. The soils don’t lie, but they may yet have one more surprise in store.

Connecting Our Ways of Knowing

In any other classroom, mention of planting “Three Sisters” might cause confusion. But in Becky Nutt’s science class at Oneida Nation High School, located on a tribal reservation in northern Wisconsin, most students know that the Three Sisters are corn, beans and squash, crops that in Native American tradition are planted together in a single mound.

Guided by Nutt, their questions focus on photosynthesis, the process by which plants like the Three Sisters convert sunlight into the energy they need to grow and produce oxygen. The lesson culminates with each student pretending to be an atom of a particular element in that process— oxygen, carbon or hydrogen—and “form bonds” by holding hands or throwing an arm around a classmate’s shoulders. It’s a fun lesson that resonates, judging by both the enthusiastic participation and the thoughtful entries each student writes afterward in a logbook.

The students know the lesson as part of a “pilot curriculum from UW–Madison,” as Nutt tells them—perhaps the easiest way to explain POSOH (poh-SOH), which is both the Menominee word for “hello” and an acronym for “Place-based Opportunities for Sustainable Outcomes and High Hopes.” The program is being developed in partner- ship with both Oneida and Menominee communities.

But what POSOH really represents is a new way of teaching science. Funded by a $4.7 million grant awarded by the U.S. Department of Agriculture in 2011, the program has the mission of helping prepare Native American students for bioenergy and sustainability-related studies and careers. POSOH aims to achieve that by offering science education that is both place-based and culturally relevant, attributes that have been shown to improve learning.

“We’re hoping to help make science relevant to young people,” says CALS biochemistry professor and POSOH project director Rick Amasino. “Bioenergy and sustainability offer an entrée into broader science education.”

For Native American students, sustainability is an obvious fit for science discussion, Amasino notes. The Native American concept of thinking in “seven generations”—how the natural resource management decisions we make today could affect people far into the future—has sustainability at its foundation, and most Native American traditions reflect that value. The Three Sisters, for example, offer a way to discuss not only photosynthesis but also indigenous contributions to our knowledge of agronomy, including how mixed crops support long-term soil health and animal habitat.

An innovative program like POSOH is needed because current teaching methods are not proving effective with Native American students. Native American students score lower in reading and math than their white counter- parts in elementary and high school, and only a low percentage have ACT scores that indicate college readiness, according to “The State of Education for Native Students,” a 2013 report by The Education Trust. Other studies show higher dropout rates and unemployment among Native Americans—and, specifically, that Native Americans are vastly underrepresented in STEM fields as students, teachers and professionals.

Verna Fowler, president of the College of Menominee Nation, sees POSOH as offering a crucial connection. Her tribal community college, along with CESA 8, the state public education authority that includes the Menominee Indian School District, has been a key partner in developing and piloting POSOH. Other leading partners include Michigan State University and, within UW–Madison, the Great Lakes Bioenergy Research Center.

“POSOH takes you into science in the natural world and helps you relate your concepts and understanding so that you understand science is all around you,” says Fowler. “Sometimes that’s what we miss in our classrooms. A lot of students are afraid of science classes. They don’t realize what a scientific world they’re living in.”

In developing POSOH materials, Amasino serves as the go-to guy for verifying the science. “The main thing I do is work with everyone to keep the science accurate,” he says.

Curriculum development and other POSOH activities are led by CALS researcher and POSOH co-director Hedi Baxter Lauffer, who has a rich background in K–12 science education. In a previous project she worked with California state universities in developing a multiyear math and science education program with diverse ethnic communities in the Los Angeles Unified School District. Alongside her work with POSOH, Lauffer directs the Wisconsin Fast Plants Program, which operates worldwide.

From the start Lauffer saw POSOH as a trailblazing effort. “We wanted to create a model for how a culturally responsive science curriculum can emerge from the community it is serving,” she says. “There’s nothing else like it.”

Lauffer knew her group was on to something during early curriculum design sessions with local educators, Native American community elders and students, particularly when she participated in a talking circle with seventh- and eighth-graders from the Menominee Indian School District. The kids were asked a simple question: “How do you take care of the forest—and how does the forest take care of you?”

“They had all kinds of stories about the plants and animals that live there,” says Lauffer. “They were saying things like, ‘I take my nephew into the forest and teach him to pick up his trash. He needs to know that it’s a beautiful place to play.’ It was clear that their connection to nature was strong—and that’s an opportunity for making science learning relevant and valuable.”

Initial steps for curriculum development included building key institutional partnerships and forming teams for curriculum design that brought in a wide range of Native American voices. Team members include scientists, assessment professionals, and teachers of science, education and Native American culture, some of whom are field-testing the materials.

The group is creating curricula for grades seven through nine. Seventh grade is complete, comprised of a fat lesson book and accompanying DVD with graphics and other enrichment materials. The other grades will be completed by the end of 2015, the project’s final year.

Other POSOH activities include after-school science clubs facilitated by undergraduate interns who also serve as informal mentors. This work is conducted in partnership with the Sustainable Development Institute at the College of Menominee Nation under the direction of Kate Flick BS’06, who studied community and environmental sociology at CALS and now serves as POSOH’s education coordinator.

Thumbing through the seventh- grade lesson book, it is immediately clear that cultural relevance is placed front and center. A typical textbook might pay tribute to cultural relevance with sidebars while the main text carries on with “science as usual.” With POSOH materials, cultural relevance is embedded in the meat of the text.

The seventh-grade curriculum, for example, is called “Netaenawemakanak” —Menominee for “All My Relatives”— and its six units focus on various scientific aspects of the Menominee Forest, such as organisms, microhabitats and ecological interactions. Students learn how such terms as evidence, protocol and conceptual models are used in science and, as a final lesson, how to formulate their own stewardship action plan based on what they’ve learned.

And it’s not just what the students learn, but how they learn it. POSOH incorporates forms of teaching and learning that are rooted in Native American culture, such as:

• Storytelling—Scientific concepts are imparted through stories involving the everyday lives of young Native American protagonists as well as figures from Native American legends and folktales.

• Perspective-taking—Students are invited to look at ecosystems from the viewpoint of animals, plants and other natural resources.

• “Careful noticing”—Students use all their senses when getting to know an environment, paying close attention to what is and is not present. In an exercise in the forest, for example, students are asked not only what they see, smell and hear, but also, “How do the woods make you feel?”

“These are age-old practices in indigenous pedagogy, but they aren’t widely seen as such. They’re so fundamental that I think they’re often overlooked,” says Linda Orie, an enrolled member of the Oneida tribe who taught middle-school science at the Menominee Tribal School. She now works on the POSOH curriculum team.

Orie considers POSOH a huge eye- opener for students. “It’s probably one of the first times they’ve seen anything in science class that has anything to do with Native Americans or Native American contributions to science and forestry,” she says. “Especially for a Menominee, that’s really important because most of them live on the reservation and a lot of their parents are employed through the lumber mill.”

“So they live and breathe the forest, but they don’t often get that instruction in the classroom,” Orie continues. “It was a huge gaping hole in the curriculum when I started teaching at the tribal school.”

By drawing upon indigenous ways of teaching and learning, POSOH helps bridge a gap between how students experience nature and how knowledge about it is imparted in the classroom. POSOH team member Robin Kimmerer, for example, says that as a professor of forest biology and as a Native American, she’s had to work hard to reconcile two distinct perspectives.

“In science we are asked to objectify the world, to view it in a strictly material, intellectual way,” says Kimmerer, who earned her doctorate in botany at UW–Madison and now teaches at the State University of New York. “In indigenous ways of knowing, we’re reminded that we can understand the world intellectually, physically, emotionally and spiritually—and that we can’t really claim to understand something unless we engage all four elements,” she says. POSOH team member Justin Gauthier, an enrolled Menominee who as a teenager attended a Native American boarding school, has come to think of science as another language for indigenous ways of knowing nature. In science, he says, “They’re using numbers, they’re using experimentation. It’s just different language.”

That recognition helped science feel more approachable to him.

“I used to perceive science as being outside of my experience. It was meant for scientists to do in a lab in a white coat. When I started thinking about how it tied into the ways that I was thinking, I felt that it had always been a part of my life and I had just never given it much credence,” he says.

Gauthier, a returning adult student, is earning his bachelor’s degree in English at UW–Madison and plans to teach in a tribal college after earn- ing an MFA in creative writing. He serves POSOH as a curriculum writer. Gauthier suggested naming the seventh- grade curriculum Netaenawemakanak (“All My Relatives”) because it is often uttered as a kind of one-word prayer when entering and leaving the sweat lodge. To him, among other things, the word expresses Native American regard for nature.

POSOH is not only helping fill a gap in science education. Project intern McKaylee Duquain, a junior majoring in forest science, notes that POSOH is filling a gap in cultural knowledge among young Native Americans as well. As an enrolled Menominee who attended tribal schools, Duquain confesses to not knowing what the Three Sisters were until late in high school—and she learned about it on her own.

“It wasn’t even offered when I was a student,” she says. “I’m not the most traditional person out there—I try to practice the traditional ways, but you can only do so much in this day and age. I feel like having that knowledge incorporated into your everyday learning life in school would definitely cement it in more.”

The program’s most enthusiastic ambassadors are the teach- ers and students who have been using it. So far the POSOH curriculum has been taught in 25 Wisconsin classrooms with the participation of some 135 students. Another 140 students have worked with POSOH materials in other settings, such as outreach programs conducted by undergraduate interns and the project’s high school club, called the Sustainability Leadership Cohort.

“I love that the POSOH curriculum brings science to a local level,” says Dan Albrent, a science teacher at De Pere’s Ashwaubenon High School, where he’s been piloting POSOH materials for the past two years. “Students a lot of times wonder why we are even learning all these complex things in science and just want a reason. POSOH does a nice job of bringing in real-life situations and issues that are literally close to home. And never in the curriculum are students sitting and listening to a lecture. They are actively talking and working with real data and real situations to solve problems.”

To him, POSOH represents the future of science education. “I truly believe this is how science should be taught,” Albrent says. “At the moment there is no better alternative for helping our kids realize the importance of learning science for our communities.”

Becky Nutt, of Oneida Nation High School, is just as convinced. She appreciates the program’s emphasis on reading and writing, which is not a given in science class—but important, she notes, in both communicating science and demonstrating understanding.

“Most important from my view is the integration of Native American culture into the materials,” says Nutt. “If, through these materials, we can foster better relationships between our Native students and their communities and other individuals and their communities, then we are on the right track.”

POSOH team member Linda Orie is taking a break from the classroom while earning her master’s degree in curriculum and instruction at UW– Madison—but she plans to return
to teaching in tribal schools and sees POSOH as a life-changing tool to bring with her.

“My career goal is to transform Indian education because it is stuck in this terrible rut,” Orie says. “Working in the tribal school I saw a lot of opportunity for growth. It was heartbreaking to see so much potential and not have colleagues that saw the same. And not seeing as many Native American teachers as there could be or should be in the schools. The kids need the best curriculum and the best teachers, and they’re not getting that right now. I want to be part of the change.”

That Orie, as an Oneida, backs the program so strongly speaks to perhaps the program’s greatest indicator of success—the acceptance it has earned in Native communities.

“We’ve been presenting POSOH to different schools, to different areas, to our boards of education and so on, and they’re very enthused about it— extremely enthused, I must say,” says College of Menominee Nation president Verna Fowler.

That enthusiasm is no accident, but the result of the program being developed within and in partnership with Native communities. Patty Loew, who is a professor of life sciences communication at CALS and an enrolled member of the Bad River Band of Lake Superior Ojibwe, just happened to be on hand during a POSOH presentation on the Menominee Reservation and was heartened by what she saw.

“I’ve been in a lot of situations where UW people try to engage with community members and it’s like pulling teeth for reasons that vary, but often come down to a basic mistrust of researchers,” Loew says. In those encounters, she says, “People are either being polite or they’ll have their arms folded and are just quietly listening or maybe hiding their resentment.”

“That was not the case on this day,” Loew says. “People were really engaged, they were discussing, they had ideas, it was emotional. It was clear to me that the community’s handprints were all over this project. They not only were hosting the research, they had shaped it, they were contributing to it, they were using the materials in their classrooms, they had a lot of pride in it. And I was really impressed.”

POSOH team member Justin Gauthier also knew about the mistrust firsthand—and saw it melt away.

“Historically in Indian Country there’s been this sort of stigma toward outside groups coming into the community, studying groups of people, taking data out of that community—and nary shall the two meet again,” Gauthier says. “But I really like and respect the way that the POSOH process is set up because, while the leadership team
is made up of people from within and without that community, the ideas—the voices at the table—are respected and integrated into the process. I feel like when we finish the project the curriculum and the relationships we’ve built are going to remain strong.”

“And that could be the big takeaway for me from this project,” Gauthier says. “Communities have the right to be wary of people coming in and studying them. But when you have a project like this, where the end result is meant to be a gift for that community, then you really see the beauty of cultures blossom and open up.”

That could be the big takeaway for Amasino and Lauffer as well. They and their team conceived of POSOH as an experiment in developing culturally integrated science curricula in a way that could be applied in various settings around the country.

“Our overarching mission is to build a transformational model for place- based collaborations dedicated to preparing all learners, especially those who are underrepresented in science and science education,” says Lauffer. “These community-based processes are what the project will share more broadly as it draws to a close. We plan to pass on lessons from POSOH to many other communities who can then build on our work and continue improving science teaching and learning.”

To learn more about POSOH, visit http://posohproject.org/. You can also watch the following video: http://go.wisc.edu/posohvideo

Field Notes: Potato Exchange Benefits Peruvians

In the growing region around Puno, Peru, farmers hedge their bets.

Located 12,000 feet above sea level, on the side of an Andean mountain, Puno has a growing season that’s short, cool and prone to frost. The staple food of the area is potato, and local farmers plant dozens of different varieties on their plots—some that they relish for their flavor, as well as some less palatable, frost-tolerant types.

In good years everything grows well and families have plenty to eat. In bad years—when there is an unseasonable or particularly hard frost—their preferred plants fail, and they must rely on the small, bitter potatoes produced by the hardy survivors.

Soon, however, they will have a better option. For the past two growing seasons, farmers near Puno and in three Peruvian highland villages have participated in a project to grow and test frost-tolerant versions of their favorite local varieties, with great success.

These special potato plants were developed in Wisconsin by a team of CALS plant scientists and plant breeders using germplasm stored in the U.S. Potato Genebank, located in Sturgeon Bay.

“I think this is the first case where a potato developed in the U.S. has been accepted by local farmers in these communities in the Andes,” says project coordinator Alfonso del Rio, an associate scientist in the lab of John Bamberg. As an employee of the USDA’s Agricultural Research Service, Bamberg serves as director of the U.S. Potato Genebank. He is also a professor of horticulture with CALS.

The plant materials used for the project, like the vast majority found in the U.S. Potato Genebank, were brought to the United States from the Andes, the potato’s site of origin. This makes the project a special opportunity for potato breeders in the United States to give something back.

“We’re interested in returning the benefits of our genebank to Peru and the broader Andean region because that’s the area that supplied our country with germplasm,” says Bamberg, who led the project’s breeding effort. Earlier work by CALS horticulture professor Jiwan Palta, the third member of the team, made modern marker-assisted breeding for frost tolerance possible.

To make the new potato lines, Bamberg took an exceptionally frost-tolerant wild relative of the potato family—a weed, basically—and crossed it with seven popular native Peruvian potato varieties to generate frost-tolerant versions of the native potato plants.

Although the new potato lines were originally meant to be added to Peru’s national potato breeding program as germplasm for further breeding, the farmers who were involved in the trials are eager to start growing some of them right away. And no wonder. This past growing season in Puno, after a late, hard frost, a few of the new frost-tolerant lines far outperformed the local varieties, yielding twice as many pounds of potato per plot.

The CALS team hopes these more dependable potato plants will help bolster Peru’s vulnerable rural communities.

“If the farmers could send part of their harvest to market, even 10 or 20 percent, they could have some money to invest in community development—in things like clinics, schools and libraries,” says del Rio.

A New Chapter

FIVE YEARS AGO this past September, I received a call from Chancellor John Wiley offering me the opportunity to lead a great college at a great public university toward its future, strengthening its core commitments and bringing new energy and focus to its missions. In the time I have served as dean, we have made historic progress in many areas. We have modernized operations and improved the efficiency and impact of our work. We have attracted new resources for research, teaching and outreach and recruited more than 50 new professors, enhancing what is already the most productive and excellent faculty in agricultural and life sciences in the world. We have improved our campus facilities and research stations, recommitted to our Farm and Industry Short Course, and strengthened partnerships that are at the core of our missions both within Wisconsin and throughout the world.

I take this step with the confidence that the college is in a very strong position to continue its momentum.

Now, recognizing that we have accomplished so much of what I felt I was brought here to do, it’s time for a new chapter for me and for CALS. At the end of this year, I will step down as CALS dean to focus on some issues of special importance to me. Chancellor Biddy Martin has given me a unique opportunity to study our campus wide commitments to sustainability sciences, which will allow me to bring insights from agriculture, environmental and life sciences to help define the research agenda for our university. I’m enthusiastic about taking this challenge, which builds very naturally on my own research interests, my experiences as dean and my recent position with the U.S. Department of Agriculture.

I take this step with the confidence that the college is in a very strong position to continue its progress—with its budget balanced, a dynamic faculty on the rise, growing enrollments and many friends. I am delighted to share that Bill Tracy, current chair of the Department of Agronomy and a veteran of many campus leadership positions, has agreed to serve as interim dean while the chancellor and provost conduct a national search for the next CALS dean. Bill is an exceptional scholar and leader—one who was deeply influential in my decision to come to Wisconsin—and he will represent and direct CALS with grace and vision.

As I make this transition, please know how deeply I appreciate your support and friendship. I know that you, like me, cherish the college and all that it stands for, and together we will continue to add new pages to its illustrious history. Thank you—and On, Wisconsin!

Home Again

AS THIS ISSUE ARRIVES, I am delighted to be returning to CALS after a short-term tour of duty in Washington, D.C. Nine months ago, I was honored to be called to provide interim leadership for several key research agencies in the U.S. Department of Agriculture. Now, after a truly remarkable experience with the agency, I am even more honored to be returning home.

The USDA was founded in the same year as our land-grant system of higher education, and the opportunity to work as part of the agency’s leadership team has given me a new perspective on our national research, education and extension system. My assignment was profoundly enlightening, and I return with new insights and new friends that will help me be a better dean—and help CALS become even more effective in carrying out its missions.

I believe we have so much to celebrate, and yet there is so much more that we can do.

I want to thank everyone in the university and the community who helped me take on this challenging role. I can’t say enough about the outstanding leadership that Irwin Goldman provided as interim dean. Under his steady guidance, and with the talents of his excellent team, CALS has not missed a beat. Indeed, we’re coming off a year of historic accomplishment. Our community championed a landmark reform to our degree requirements and began a self-study that will shape the future of our academic affairs. Our faculty, staff and students continued to find new ways to build partnerships with the communities we serve and improve our economic and social well-being. And our alumni have responded with heartwarming strength to our call to help maintain the affordability of a UW-Madison education through gifts to the Wisconsin Rural Youth Scholarship Fund and other need-based scholarships.

As I return and begin my fifth year of service to CALS, I believe we have so much to celebrate, and yet there is so much more that we can do. In Washington I saw both the impact of our land-grant system and the great challenge in maintaining its resources. But I am proud to be leading a college that has always responded to such challenges with innovation, information and inspiration.

A Chance Worth Taking

A person is only supposed to get one once-in-a-lifetime opportunity. In my professional life, I’ve been fortunate enough to have at least three.

The first came when I received a federal grant to pursue my graduate studies at the Massachusetts Institute of Technology and later at Cornell University. Everything that followed in my career has flowed from that support.

The second came when I was asked to serve as CALS dean. I recognized this as a chance to become part of an institution that makes a profound and daily impact on lives in Wisconsin and throughout the world. Having witnessed the accomplishments of this community firsthand, I can tell you that CALS earns its sterling national reputation every day with the intelligence and innovative spirit of its faculty, staff, students and alumni.

Our college’s tradition of contributing to national leadership in agriculture is a long and proud one, and I am humbled to inherit that legacy.

It’s because of that national respect for CALS that I have been given another of those once-in-a-lifetime opportunities. I have accepted an appointment as deputy undersecretary for research, education and economics for the U.S. Department of Agriculture, a role that will allow me to participate in the conversation about our national priorities related to food, agriculture, health and natural resources.

Our college’s tradition of contributing to national leadership in agriculture is a long and proud one, and I am humbled to inherit that legacy. I will be joining a team charged with bringing transformative change to an agency that funds more than $2 billion of research activities annually and is interconnected deeply with land-grant institutions such as UW-Madison. I believe I can help spark that change by bringing forward ideas that have found success in CALS and Wisconsin.

Chancellor Martin has granted me a one-year leave from my duties as dean to take on this new assignment. But I head to Washington knowing that CALS is in good hands. I am delighted to announce that the chancellor has appointed Irwin Goldman, our wonderful vice-dean, as interim dean. Irwin will guide the college with wisdom, compassion and humor, and I am certain that CALS will move ahead at full speed under his leadership.

Thank you for your support for the college and for me as I take on this new adventure. It is the wisdom and spirit of this community that has opened this door, and I hope that we can all walk through it together.

A Whole New Can of Beans

Nick George senses opportunity. With sales of organic foods outpacing the market for conventional vegetables, the executive secretary of the Midwest Food Processors Association sees a niche for Wisconsin’s processing industry: canning and freezing organic veggies.

“When you see something get wheels, you want to be part of that,” George says.

The vision makes sense. Wisconsin ranks among the nation’s leaders for processed snap beans, sweet corn, peas, cucumbers and carrots, and it has more certified organic growers than any state except California. But one thing Wisconsin doesn’t yet have is a vast quantity of organic vegetables to keep the packing lines running. While the state grows more than 200,000 acres of processing vegetables, organic production was just 348 acres by a 2005 estimate.

“We have to be able to figure out organic production on a large scale,” says Mike Bandli, an economic development consultant with the Wisconsin Department of Agriculture, Trade and Consumer Protection. “If we don’t, the likelihood is that organic commercial-scale vegetable production will move out of the state and out of the region.”

To help avoid that fate, a team of CALS researchers have been studying the challenges of large-scale organic production. Spearheaded by horticulture professors Jed Colquhoun PhD’00 and A.J. Bussan PhD’97 and graduate student Heidi Johnson, the group includes experts in soil science, entomology, plant pathology, agricultural engineering and economics, as well as state and industry officials.

The researchers say they can’t count on simply scaling up techniques used on smaller-acreage fresh-market operations. “For example, we didn’t think hand weeding was feasible when you’re talking about several thousand acres of vegetables,” Bussan says. Organic fertilizers present another challenge, both because of their cost and high phosphorus content.

Instead, the researchers are taking an integrated systems approach, looking at complementary practices to accomplish multiple goals. One aspect they are studying is the use of legume cover crops to add nutrients and control pests. For example, one strategy is to plant sweet corn into alfalfa, which continues to grow between the rows of corn, suppressing weeds and providing nitrogen.

Colquhoun notes that Wisconsin does have some advantages that favor large-scale organic production. The state’s bitterly cold winters help suppress pests that are problems in more temperate regions, and its livestock industry provides an ample supply of organic fertilizer.

“Even though our organic vegetable production has been small scale, we learn from the experience of those growers,” Colquhoun says. “(We can) take the knowledge learned in smaller-scale production and look at the feasibility of scaling it up.

Bill Sperber

If you care about food safety—and who wouldn’t?—you should know about Sperber’s work. After spending four decades safeguarding food for industry giants such as Pillsbury and Cargill, as well as serving as an international advisor for the USDA and the World Health Organization, he’s now semi-retired—but certainly not merely semi-productive. These days, he develops textbooks on food pathogens and food safety risks and has recently taken on a role as secretariat of Safe Supply of Affordable Food Everywhere, a unique partnership among global food companies such as Cargill and McDonald’s, non-governmental organizations and academia to study and address threats to the global food chain.