Saving an American Icon in England

On a mild spring day in 1980, a handful of men gathered on the sprawling lawn of England’s Windsor Castle, there to do a little landscaping. But these chaps wore suits, and one of them brought a silver-plated shovel.

The ornate spade cleared a hole for a new tree as any other would, but the laborer just happened to be Prince Philip, husband of Queen Elizabeth II. And the tree that would take root in British soil just happened to be a hybrid elm from America. This simple act was part of a broader campaign to save the species from widespread annihilation.

Accompanying Prince Philip that day was Eugene Smalley, a professor of plant pathology at UW–Madison who had been tasked with fighting the spread of Dutch elm disease (DED) more than two decades earlier. First identified in the Netherlands in 1919, DED quickly spread through Europe via elm bark beetles before arriving in the United States in 1930. Since then, more than 50 million American elm trees have been felled. The towering Ulmus americana once stood as an elegant staple in communities across much of the United States.

“The American elm tree has had a unique niche in American life,” Smalley told The New York Times in 1989. “Before the disease, you could find streets lined with elms in almost every American town.”

Ray Guries, a professor emeritus in the Department of Forest and Wildlife Ecology and a former associate of Smalley’s, called the rapid decline of the American elm a “traumatic experience” for residents of urban areas. “When they disappeared, it was as though an icon had been lost.”

Early efforts to halt the spread of Dutch elm disease were ineffective. Smalley was hired in 1957 as part of a state initiative, and he immediately went to work planting elm seedlings at the Arlington Agricultural Research Station north of Madison. This stand became known as “Smalley’s Elms,” and many can still be seen today as one drives north- bound on State Highway 51.

Smalley theorized that hybrid species with natural pest resistance — not pesticides — offered the best defense against the beetles. Through 20 years of research, he and his colleagues produced several hybrids — Regal, American Liberty, New Horizon, and Cathedral — that proved to be hardy against the cold and generally resistant to DED.

Another promising hybrid was Sapporo Autumn Gold. When Prince Philip set one in the ground at Windsor Castle, he also planted the seeds of hope. That elm still stands today and has since propagated more than 100 others on the property.

Smalley died in 2002, but his legacy lives on. His disease-resistant elms have served as replacements all over the world. Even the embattled American elm may be bouncing back. Guries has spotted them being planted once again in Madison. Although it’s unlikely ever to reclaim its former status, the tree and its hybrid cousins serve as reminders that Smalley’s work will continue for decades.

“In developing the right tree, we don’t deal in years,” Smalley once told the Wisconsin State Journal. “We deal in generations.”

In the Field: Alumni Making a Difference through Parks

Tom Blackwood MS’77 

Tom Blackwood enjoys parks so much he decided to live in one. As the superintendent of Door County’s Peninsula State Park, Blackwood resided in the park’s “state house,” with his wife, Joan, and their two children, Sarah and Matt  — fortunate to call Wisconsin’s most popular camping destination their backyard for 23 years. Blackwood was drawn to a career in parks by his inherent curiosity in the unexplored. “I was always enamored with ‘what was out there,’ the roadless patches on the state map — all those beautiful, natural areas,” Blackwood says. His time spent at UW–Madison began as an undergraduate majoring in psychology but took a quick and meaningful turn after graduation. Involvement with the Department of Forestry and the Department of Wildlife Ecology (now merged as the Department of Forest and Wildlife Ecology) led him to pursue a master’s degree in recreational resources management. Post graduation, Blackwood built his resume through seasonal positions at Effigy Mounds National Monument, Apostle Islands National Lakeshore, and Wyalusing State Park, after which he was accepted into the Park Manager Trainee Program with the Wisconsin State Park System. “The rest is history,” he says. Blackwood retired from Peninsula State Park in 2010 after celebrating its 100th anniversary. Though officially retired, he still spends much of his time hiking, biking, and skiing the trails of Door County and serving on the board of directors of the Door County Land Trust. During the summer months, he shares his extensive knowledge of the area’s land, water, wildlife, and history giving group boat tours on the bay and its islands.

Claire Campbell MS’15  

Originally from Oak Ridge, Tennessee, Claire Campbell describes herself as an energetic and outdoorsy child. “I was always the kid that was out playing in the woods,” she says. “From bugs and plants to my first summer job flipping rocks in streams and chasing salamanders for a species inventory in East Tennessee, I was fascinated by the big picture — how and why do our natural systems end up the way that they are?” Her love for the outdoors led her to complete her undergraduate degree in earth and environmental sciences at Furman University. In addition to her studies, Campbell interned on a local farm where she studied soil carbon management and volunteered for Grand Canyon National Park. “I came to love the complexities of how soil forms, how we manage it, and what options exist to protect soil systems,” Campbell says. She then came to UW–Madison to reinforce her passion with a graduate degree in soil science. She explored the role of nutrient management and agricultural efficiencies in healthy soil, which was integral in helping her realize her desire to work in the public sector. Campbell set her eyes on a job with the U.S. Forest Service and received an offer from Montana’s Lolo National Forest the same day she defended her master’s thesis. Since moving to Montana, Campbell has enjoyed checking off adventures in her 600-page book of hikes and backpacking trips near Missoula. Her favorite thus far is a bike ride up Going to the Sun Road in Glacier National Park.

Ethan Lee BS’14  

Is your tree in need of a checkup? Certified tree doctor and UW–Madison graduate Ethan Lee may be able to help. Born and raised in Wisconsin, Lee attended UW–Rock County, where he spent three years studying mechanical engineering before transferring to UW–Madison and ultimately majoring in forestry. Upon graduating, Lee chose to give back to his childhood community by using his skills to enhance Janesville parks. He accepted a job as the parks and forestry coordinator for the City of Janesville Parks Division. He is also an International Society of Arboriculture (ISA) certified arborist. Lee’s day-to-day work schedule is anything but consistent, with tasks ranging from individual tree assessment and forest health to installing new playgrounds and engaging in community outreach. “I feel extremely lucky and honored to go to work every day with a smile on my face and look forward to all the new challenges,” Lee says. “I love my job and my community, and for that, I am very grateful.”

Jill Peters BS’14  

Communications may not be the first field that comes to mind when you think of careers in Rocky Mountain National Park, but it’s reality for Jill Peters. She grew up on Sand Island, a part of the Apostle Islands National Lakeshore, where she was immersed in the outdoors from a young age and gained a deep appreciation for the natural world. When it came time to choose a degree, Peters was stuck between pursuing her knack for writing, photography, and outreach and her passion for science and the outdoors. Thankfully, she found the perfect marriage of her interests through the life sciences communication major at UW– Madison. After graduating, Peters headed straight to Fire Island National Seashore along the coast of Long Island, New York, where she explored both research and communications positions. In May 2017, she applied and was accepted as the new biological science technician at Rocky Mountain National Park. Here, Peters has been able to continue her multifaceted career by participating in and communicating the latest scientific research in one of the planet’s most picturesque places. “Getting to be in the mountains, participating in all sorts of science research, and then playing a role in making the complexities of that science accessible to the public is a challenging and rewarding experience,” Peters says. “It’s truly the best of both of my passions.”

David Powell MS’75  

Recognizing his interests in nature and recreation, David Powell created his own undergraduate degree program at Carleton College to prepare him to pursue further education in outdoor design. Upon graduation, Powell headed to UW– Madison to obtain his master’s degree in landscape architecture and kick-start his career. With this education to guide his craft, he returned to Canada, settling in Saskatchewan to work as the chief landscape architect for the province’s Parks Service and eventually opening his own landscape architecture firm. Powell has worked in private practice for more than 25 years and shows no sign of slowing. The reward of creating living landscapes and watching them grow and change over time keeps Powell energized and inspired. In the midst of his success, he recognizes his time in Madison as his design awakening. “UW–Madison exposed me to ways of understanding and appreciating natural systems, which have forever framed the way I look at the world,” Powell says.

Pamela Schuler BS’80  

As the Ice Age National Scenic Trail manager for the National Park Service, Pamela Schuler works with public and private partners to oversee and carry out federal requirements to plan, acquire land for, develop, and interpret the 1,200-mile Wisconsin trail. Schuler became involved with the Ice Age Trail as a horticulture major working as an intern through the Department of Landscape Architecture. Upon graduation, she gained recognition for developing the trail through various positions with the Wisconsin Department of Natural Resources, which led to her current position. Though she began as a landscape architect, Schuler stresses how much collaboration and community involvement are required to build and maintain the trail. Her life’s work continues to pay off in a beautiful and visible way. “The Ice Age Trail reaches into communities to bring urban residents and children out into nature, provides an outstanding hiking experience that educates the public about our glacial past, and restores ecosystems along its footpath while connecting public lands across the state,” she says.

Jon Adams-Kollitz BS’89  

Jon Adams-Kollitz’s interest in urban parks has taken him around the world. While pursuing his undergraduate degree in landscape architecture at UW– Madison, he took advantage of every possibility he could. “I was floored by the sheer amount of options and possibilities UW offered,” Adams-Kollitz says. He focused his studies on architectural history and cultural geography and later became involved with Madison’s sustainability organization, Sustain Dane. Upon graduating with his BSLA, Adams-Kollitz spent the summer in St. Petersburg, Russia, and Washington, D.C., inventorying and documenting historic landscapes for a survey. After launching Formecology, an ecological/ artistic design build firm in Madison, he continued his education at the Royal Institute of Technology in Stockholm, Sweden, where he focused on sustainable urban design. In 2007, Adams- Kollitz settled in Burlington, Vermont, where he works as the parks project coordinator for the Parks, Recreation, and Waterfront Department. He is now focused on designing and implementing an ecofriendly and universally accessible playground and on rehabilitating Burlington’s iconic eight-mile waterfront bike path, efforts that earned him the first ever Mayor’s Award for Innovation in 2016.

Into the Woods with FWE

Regal hemlocks tower overhead, fragile ferns blanket the forest floors and ribbons of sunlight break through the canopy. That may sound like paradise, but for CALS forest and wildlife ecology students, it’s a school day—with the forest as a classroom.

Every summer the Department of Forest and Wildlife Ecology offers students a weeks-long opportunity to learn among the trees at the CALS-based Kemp Natural Resource Station in Woodruff. In odd-numbered years, a field camp focuses on wildlife ecology. And in even years students can participate in a Forest Resources Practicum, affectionately known as “Forestry Camp.” The three-week course allows young foresters to see what a career in forestry entails while learning essential skills from forestry professionals.

Last summer’s Forestry Camp followed the established tradition. The class is divided into teams of four, and each is assigned a “compartment,” a 200-acre tract of rich woodland in the Northern Highland American Legion State Forest. Throughout the course, teams learn all about their plot—essentially, forest ecosystem structure, function, processes and services—by surveying the vegetation, soil, animals and, of course, the trees.

Along the way students develop the knowledge to conduct a comprehensive forest resource assessment. Subject areas include basic field skills, plant identification, GPS & GIS, timber cruising, forest soils, wildlife identification and survey methods and forest habitat classification.

Instructors guide students as they work, visiting individual teams in the woods.

“Field visits often take an hour or two because they become deeper conversations about the history of the forests and the various components of the ecosystem,” says professor Volker Radeloff. “Camp days end up being long days!”

All of that work pays off with invaluable experience and a slew of lifelong memories. Student John Joutras recalls the day he and his team got stuck in the middle of the forest during a rainstorm.

“One of my teammates said, ‘You know you’re a real forester when you’re bushwhacking through the woods in the pouring rain.’ Sure, that might sound kind of miserable, but it was actually really fun,” says Joutras.

Hiking from dawn to dusk would feel like a full day to most, but students refused to stop there. After dinner, activities continued with canoeing, campfires and even more hiking.

During the final week, students summarized their results and conducted a final project based on their own and other teams’ data. But the true value of the course can’t be quantified through a final project or grade, students say. Rather, forestry camp motivates students and fuels their passion for the outdoors while they build lasting relationships with instructors and, of course, each other.

“The real challenge isn’t any individual part but finding a way to tackle it all as a team,” says Joutras. “I found that invaluable.”

-Gilliane Davison

Interested in supporting this program? You can make a gift to the Department of Forest and Wildlife Ecology Field Camps and Experiences Fund.

Candid Camera

At first there is nothing—windblown leaves maybe, or the quicksilver skitter of a squirrel. I can’t identify the source of the movement, and settle back expectantly because soon, I know, there will be more chances.

Huddled in the twilit hour I am hunting, expecting the common whitetail deer—but hopeful for more elusive game. Where there are deer there could be a wolf, right? A bear? Either would make the wait worthwhile. Or perhaps something I’ve never seen, like the elusive fisher?

Some time passes before I see the princely buck, so hale and burnished brown that my gaze lingers long in pure appreciation. His neck and shoulders are heftier than even the regal eight-point crown suggests. I’ve seen a lot of deer already, but he has presented broadside, at perfect range. My finger hesitates as I savor the action. And finally I decide, yes, this is a keeper.

I shift in my perch and refocus. Yes, there is the heart. My finger flexes. And I click on the heart icon. Subject 4988060, a Dane County buck snapped last November, is now in my favorites folder.

My hunting perch, you may now realize, is my customary recliner, and I’m using my laptop to spy on the wildlife of Wisconsin while dinner warms. In 20 minutes I’ll go through a few hundred of the millions of photos already collected by Snapshot Wisconsin, a growing net- work of trail cameras.

By now everybody’s seen trail cam photos. Maybe you or someone you know already uses them to scout deer, or just to see what’s on your land when you’re not looking.

Certainly someone’s emailed you a photo or short video, or they’ve shown up in your social media feeds. Those are the special shots, curated, viral. Snapshot Wisconsin is the raw feed, and therein lies the fun. Because here you can get your wildlife fix and be a scientist, too. Identifying these animals contributes to a cutting-edge effort that may fundamentally change the way we study wildlife.

“It’s like having 350 people out there in the woods day and night recording everything they see,” says Jennifer Stenglein MS’13 PhD’14, a research scientist with the Wisconsin Department of Natural Resources (DNR) who directs Snapshot Wisconsin. “That’s amazing data that we’ve never really had before.”

And 350 is just for starters. The goal is four cameras in every township in Wisconsin. Stenglein will be happy if they can reach at least 3,000 cameras. “We are, I believe, going to have one of the best data sets in the world,” she says.

At 10:40 every morning a NASA satellite flies over Wisconsin and snaps a series of pictures. The photographs measure many things, including a day-by-day record of how green the landscape is, which in turn gives us an idea of how well the plants are doing. The data has been collected for years—one of the satellites, Terra, has been in orbit since 1999—and offers an ever-lengthening perspective on the American landscape.

Satellite photos are now commonplace, but for most people remote sensing data is an abstraction. Woody Turner, program manager for NASA’s Ecological Forecasting, is always working to make that data matter to as many Americans as possible. “It’s really important to be able not only to understand what’s happening in your backyard or your woodlot but also to put it in the broader context,” he says. “The satellite brings in the broader context.”

In 2012 NASA announced it wanted to fund a project connecting its data with state agencies and university researchers. These are regular customers, but now there was a twist: NASA wanted a project that also used trail cameras and citizen scientists.

Phil Townsend, a professor of forest and wildlife ecology at CALS, had wanted to connect trail cams and remote sensing data for years, and he quickly called his professor colleague Ben Zuckerberg to brainstorm the citizen science angle. Then they reached out to Karl Martin BS’91, then the DNR’s forestry and wildlife research chief,
who knew camera prices were dropping and was also thinking about how to use them to improve research techniques. Martin also had access to a rich store of potential volunteers.

With all the ingredients NASA was looking for, the Wisconsin team won a pilot grant to install 80 cameras. It was an opportunity to improve wildlife research and put big data to work in the natural world. It even seemed like a promising tool for youth engagement—a partial antidote to nature deficit disorder. “It’s a very good example of cross-disciplinary, cross-agency teamwork,” says Martin, now the interim dean and director for UW–Extension Cooperative Extension. “This is how you leverage the Wisconsin Idea.”

Almost as soon as it began, state budget woes put the project on ice. In a curious twist, a raging national debate over gun control led to record sales of guns and ammunition. These sales are federally taxed, and a portion is returned to the states via the Pittman–Robertson Act for natural resource projects. With a secure funding stream, Snapshot Wisconsin began in earnest.

While the technology has been available for years, the ambitious scale remains a challenge. Educators and tribes can install cameras throughout the state, but cameras for private land are being rolled out gradually. Racine, Vernon and Dodge counties recently joined Iowa, Iron, Jackson, Manitowoc, Sawyer and Waupaca. At last count 417 volunteers were operating 607 cameras that have taken more than 8 million photos.

“The logistics are a big part of it,” says Townsend. “The scale that we’re doing this at has never been done before.” But scale is also the payback. Townsend is interested in phenology—the cycling of the landscape from brown to green and back again. Factors ranging from climate change to land use change can influence phenology. The Snapshot cameras are programmed to take an image at 10:40 a.m. every day, in sync with the satellite, providing a much richer data profile for that precise location.

Meanwhile the motion trap captures the phenological patterns of the animals. “Animals respond differently to their environment,” says Townsend. When they give birth, when and where they feed, when they’re out and about and when they’re in hiding all change, and we understand only a fraction of the whys. Bringing landscape data together with animal data may answer a lot of outstanding questions.

“Wildlife research every now and then gets transformed by technology,” notes Tim Van Deelen, a professor of forest and wildlife ecology. Radio telemetry revolutionized wildlife study in the ’70s, but it also took a while before researchers were able to put that information to use.

“That’s where we are with camera data,” Van Deelen says. “We’re in that lag phase where we are figuring out how to be efficient with the use of that data. I’m betting that as cool as things are right now, they’re going to get cooler as analytic techniques develop. I think there is a lot of basic biology that is going to come clear because underlying Snapshot Wisconsin is a very robust sampling scheme.”

There are two kinds of Snapshot Wisconsin volunteers. One group maintains cameras—either on their own land or special project cameras on public lands. Sited away from human activity and preferably on a game trail, the cameras operate day and night, snapping three photos in quick succession via a motion trigger. Memory cards and batteries need to be changed at least every three months, and the card uploaded back to Snapshot Wisconsin. Here technology takes over. To avoid any possibility of surveillance, the images on the card are encrypted. After decoding they are uploaded to Microsoft Cognitive Services, where special software removes images that contain humans. Then the image batches are sent back to each camera volunteer, who removes any people pictures the software may have missed.

After this double-check, the images move to me in my armchair via Zooniverse, a citizen science web platform designed by the Adler Planetarium in Chicago. Its goal is to harness our digital enthusiasm for something more than selfies and cat videos. On Zooniverse you can help with research projects that range from finding evidence of water on Mars to transcribing Civil War telegrams.

Why not just let a computer do it? Even in this age of the Watson cognitive computing platform and pervasive facial recognition, the human mind is still the most agile tool available for subtle pattern recognition. “There is no machine that’s as good as the human brain when it comes to being able to capture these kinds of images and classify them appropriately,” explains Zuckerberg.

Log on to Zooniverse and you’ll soon begin to appreciate both the challenge and your gift. The three-photo sequence captures movement. Some images are empty, and if the frame sways, you can tell that wind triggered the snap. But then you find an empty image where just a tiny bit of vegetation moves, and you realize that something has just passed by. Sometimes there’s just a blur of color, or—at night—eye gleam. After a while, you begin to recognize places and patterns, to appreciate the different ways that animals use and move across the landscape. Even the boring photos can surprise you. There is one squirrel in Sawyer County who loves to run a steeplechase along a few fallen birch logs. Occasionally this camera catches a deer. But just as I was getting frustrated with what felt like the 99th photo of the same squirrel, I realized the field beyond was crowded with 14 young turkeys.

Citizen science dates back at least as far as the then-nascent Audubon Society’s first Christmas bird count in 1900. (Plain folk have been collecting astronomical and meteorological observations for far longer.) In Wisconsin, thousands participate in all kinds of projects, monitoring everything from water quality to bat populations.

Zuckerberg hopes that through Snapshot Wisconsin, biology can join the ranks of such disciplines as meteo- rology that collect data continuously. “Collecting biological data tends to be very difficult,” he explains. State-of-the- art radio tracking can follow only a few individuals. Ecologists want to see how species respond across broad stretches of space and time.

“To me the real value of this is being able to think about animal communities over the course of an entire year,” Zuckerberg says. “It’s thinking about big-pattern ecology.”

Snapshot Wisconsin is in what you might call its giddy start- up phase. There isn’t an end product yet, but as the project ramps up, the anecdotal excitement grows. Director Jennifer Stenglein can tell you that there are quite a few porcupines, not so many striped skunks and a fair number of fly- ing squirrels. Also, that we don’t capture as many wolves as you might think, and that it can be very hard to tell coyotes from wolves. And, to no one’s surprise, there are lots and lots of deer. In fact, 60 percent of the animal photos from Sawyer and Iowa counties have deer. Which leads to an obvious question: Can Snapshot Wisconsin close the persistent (and politically sticky) gap between hunters and the DNR about deer populations? Nobody is taking bets on that, but the project should upgrade research techniques overall. “The way that the DNR tallies wildlife is highly sporadic,” says Townsend. “It’s not systematic, it’s different among different wildlife species, it’s difficult to do and it’s expensive to do well.”

Stenglein’s other major DNR responsibility is care and feeding of the state deer population model, and she sees Snapshot Wisconsin as a dual-use tool. On the one hand, it can contribute to the modeling currently in place, providing an index for population size, some idea of overwinter survival, and the fawn-doe ratio. “Cameras can be the best way to get a couple of those deer metrics, we think,” she says.

“It might also lead to an entirely different way of understanding the deer population,” Stenglein notes. The current model uses data from two observation windows: an August/September survey conducted by the DNR and the public, and the nine-day gun season harvest data. Snapshot would provide many more data points in time.

Two important research projects will help determine the ultimate value of the cameras. Elk reintroduction in Sawyer, Ashland, Bayfield and Jackson counties includes a much higher density of cameras. This will allow scientists to check the validity of the lower-density Snapshot data. And because many of the elk are also collared, traditional telemetry data can also be compared with the camera data. Similar comparisons can be made on another project in Dane, Iowa and Grant counties studying the survival impact of chronic wasting disease. Deer and their predators (coyote and bobcat) are both being collared, and cameras are also planned.

Current deer population models have a strong grasp of general population dynamics, but they are missing crucial landscape factors that we know influence deer. That, says Townsend, is where Snapshot Wisconsin will make the difference. “You are not going to get any one township perfectly, but by sampling enough townships you are going to sample the diversity of land cover and land uses,” he explains.

When all of those cameras meet all of that diversity, patterns will emerge. Find a relationship between deer density and vegetation and you can begin to make predictions. “The strength is in numbers,” Townsend says. “The remote-sensing data is everywhere. Can we harvest all that information to help make the models better?”

Charged with predicting deer populations, Stenglein usually thinks about lots of deer all at once. But as she’s built up Snapshot Wisconsin, a different window on wildlife has opened.

It began when she saw the work of an artist who was using her own trail cam photos for inspiration. Stenglein realized the artist was not painting a generic raccoon, but a very particular raccoon. The artist didn’t “know” the raccoon, and was just looking at photos. Yet there was a kind of individual relationship on view. “I realized that so much of this project is actually about the individuals in these photos,” Stenglein says. “That’s what draws people to this project.”

It was easy to imagine the connection landowners might feel for a camera they install and maintain on their property, or even one on public lands that they use. Stenglein gets lots of email from volunteers thrilled the first time they get a fisher or black bear they didn’t know they had on their property. Sue Steinmann MS’83 volunteered to place a camera on her scrub oak barrens near Arena “to see if we have bear or bobcats,” she says. “I really think we had a wolf come through last winter.” Now she’ll have more than footprints for proof.

Steinmann and her husband are active in ecological restoration, so they are probably more engaged in natural resource issues than most people in Wisconsin. But one of the things being studied by Snapshot Wisconsin is how citizen science can lead to better communication between scientists, resource managers and the public—and how this might lead to better resource management overall.

“When you have folks who are engaged in the process in more depth, and maybe helping to drive some of the questions, or helping to partici- pate in the interpretation of the data, that’s where you’re starting to see some of these community-level outcomes,” says Christine Anhalt-Depies, who is currently pursuing a PhD in wildlife ecology.

Anhalt-Depies is watching the online dynamic among the volunteers— some of whom come from all over the world—and how that evolves. Members of the research team are identified in Zooniverse, and the project also includes a few moderators (you can think of them almost as docents)—volunteers who help new users navigate the learning curve. The chatter is informed and supportive, and while the task might seem rote, it quickly becomes fun.

“I get addicted to doing that and have to stop after a while,” admits Sue Johansen BS’94. As a naturalist at Devil’s Lake State Park, she monitors three cameras for the park and one Snapshot Wisconsin camera in the West Bluff area. While the cameras began as a new way to engage visitors, they’ve also found animals—flying squirrels and short-tailed weasels—that no one knew were in the park. “What happens when you’re not around?” she says. “It’s a different way to connect to the outdoors.”

Then there are the “super users.” Zooniverse projects tend to develop their own core volunteers, people who process fantastically more images than most people. Some of these people are fully vested in the community aspect, engaging in conversation through message boards. Others remain silent. What are they getting from it, Anhalt-Depies wants to know. Will it translate to engagement in the real world?

“These are not cyborgs out there,” Zuckerberg says. “These are people very invested in the research.”

It’s these modern times that make Snapshot Wisconsin so fascinating.

We are becoming so acclimated to screens, to surveillance, to the omnipresence of cameras. Social networks have always mattered, but they are more visible than ever as we attempt to reap their bumper crops and avoid their vicious undertow. Selfies may be changing our very sense of our place in the world. Science and business are being rapidly remade by our ability to collect big data, and by our struggle to understand it.

Snapshot Wisconsin rides the rebounding ripple effects of all of these phenomena. And yet somehow nature remains at the center of the experience.

I admit: I had my doubts. But I threw both hands up in delight when I scored my first black bear. I was tickled to learn the blob that I had thought might be a wounded turkey turned out to be, literally, a happy family pileup of otters. I laughed longer than I should have when the camera caught a coyote leaving a fecal sample. (Photo bomb.)

In nature there is no substitute for observation. And while the parade of images in Snapshot Wisconsin should not be mistaken for being out there, it’s a legitimate supplement, a booster shot against nature deficit disorder.

“If you are going to maintain nature or wild places on this earth as our own numbers grow, I think it’s going to be because we care about it,” says NASA’s Woody Turner. “And to care about something you have to be at least somewhat familiar with it.”

Zuckerberg worries that we are increasingly detached from nature— that some children actually view nature as something to fear. Sometimes he listens to his children, ages 9 and 14, on Zooniverse in the next room. They love all the deer pictures but get totally jazzed by the occasional bear.

“I think using technology to allow another experience is what makes this project fun,” he says. “This offers a window for kids to become interested and engaged in natural history. I think any way you can do that is going to be a positive experience.”

Sloths Thrive at Chocolate Source

Like many and much more nimble Neotropical fauna, sloths are running out of room to maneuver.

As forests in South America and Central America are cleared for agriculture and other human uses, populations of these arboreal leaf eaters, which depend on large trees for both food and refuge, can become isolated and at risk. But one type of sustainable agriculture, shade-grown cacao plantations, could become critical refuges and bridges between intact forests for the iconic animals.

In Costa Rica, CALS forestry and wildlife ecology professors Jonathan Pauli and Zach Peery are using a complex of intact tropical forest, pasture, and banana and pineapple plantations—all connected by a large, shade-grown cacao farm—as a field laboratory to explore the ecology of two species of sloths in a rapidly changing environment.

“We know a lot about sloth physiology,” says Pauli. “But when it comes to sloth ecology and behavior, we know almost nothing. It’s a giant black box.”

But some of that mystery is being peeled away as studies of both the brown-throated three-toed sloth and Hoffmann’s two-toed sloth, two common species, are yielding new insights into their mating habits and how the animals navigate the landscape.

The fact that sloths require forested habitat and are sedentary makes them vulnerable to deforestation, says Peery. “Once a tract of tropical forest has been cleared, sloths have relatively little capacity to seek out new habitats.”

But the shade-grown cacao plantation, with its tall trees and network of cables for moving the pods that ultimately become chocolate, seems to be a de facto refuge and transit hub.

“Because of the diverse overstory of native trees, the cacao farm appears to provide excellent habitat for both species of sloths,” explains Peery. “We want to compare sloth populations in cacao to populations in intact tropical forests to see if cacao provides habitat that is of as high a quality as their natural forests.”

Fleshing out those ecological parameters, however, requires a better basic understanding of sloth behavior, knowledge the CALS researchers are now beginning to accumulate.

For example, in a study recently published in Animal Behavior, Pauli and Peery described the mating system of Hoffmann’s two-toed sloths and showed that, unlike many other animals, the females tend to disperse from their home range and that the breeding territories of males can slightly overlap, with males tolerating competitors on the fringes but excluding them, sometimes violently, from the core. And Hoffmann’s two-toed sloths of both sexes seem to have multiple partners as well. “They’re more promiscuous than previously thought,” says Pauli. “We see a much more flexible system of multiple matings.”

That’s not so for the three-toed sloth. In another study, published in PLoS ONE in December, they found that three-toed sloths are strongly polygynous—males exclude other male competitors and mate with many females.

In addition to contributing to basic sloth knowledge, these findings should help wildlife and land managers in the Neotropics make sound decisions to better balance development and conservation.

“Understanding how shade-grown agriculture can benefit sensitive tropical animals such as sloths is highly relevant, considering the ongoing and rapid loss of biodiversity in the Neotropics,” notes Pauli. “What kinds of ecological services can these already altered landscapes provide? Can we mitigate future biodiversity loss with a greater emphasis on shade-grown agricultural systems than crops grown in monocultures? That’s the future we’re facing.”

Because of their sedentary nature and dependence on forest, sloths can be viewed as an “umbrella species,” says Peery. “Protecting sloths could indirectly protect many other animal species in tropical forests that are harder to measure and study.”

Class Act: Hardwood and Soft Skills

When CALS sophomore Logan Wells tells you he spends his spare time sawing logs, he doesn’t mean he’s catching up on sleep. He’s actually out in the woods, running logs through his portable sawmill, making lumber for clients—and making money to help cover his college expenses.

Wells’s Smock Valley Timber is more than a business—it’s part of his education. He started it as a hands-on project for the National FFA Organization, the youth program focused on agricultural and natural resource careers, while he was still in high school. Wells enjoyed working the wood and growing the business so much that he opted to enroll in CALS as a forest and wildlife ecology major with an eye toward a career in forestry or forest products.

While practicing and studying forestry keeps Wells busy, the program that sent him into the woods in the first place keeps him even busier. Logan is a state vice president in the Wisconsin FFA Association, representing 24 FFA chapters in Dane, Rock and Green counties.

Much of that work involves going out to middle and high schools, where he encourages FFA members to get active in the program and talks with them about the importance of “soft” skills—a positive attitude, good work habits, teamwork and other traits that can put them on the path to success.

His own high school FFA project helps them understand where a good idea and a good attitude can take them. His timber enterprise paid off in more than money. It earned a top prize in a national FFA competition, which in turn earned him a spot on an agricultural exchange trip to Costa Rica featuring visits to banana, coffee and cacao plantations, whitewater rafting and trips through the rainforest on zip lines and suspension bridges—all very exciting stuff for students to hear about.

“I get to tell them my story and inspire them to do something like that for themselves,” Wells says.

Five things everyone should know about . . .The Tension Zone

1.  You will not suddenly develop migraines upon entry. Rather, a “tension zone” describes a geographic area that marks a change from one type of vegetation to another, with species from both areas intermingling in that zone.

2.  There’s a pronounced tension zone in Wisconsin. It stretches in a loose S-shape from Burnett County in the north all across the state, ending in Racine County in the south. Wisconsin’s tension zone marks the crossover between the Northern Mixed Forest—closely related to the forests of northeastern Minnesota, northern Michigan, southern Ontario, and New England—and the Southern Broadleaf Forest, which is more like forests you’d see in Ohio and Indiana. In the tension zone you’ll find plants and animals representing both of these forest types. Before the landscape in the south was developed and converted to farms, you would have seen primarily open oak savanna with forest and prairie.

3.  It’s mostly about climate. The tension zone is marked by a
climatic gradient, with cooler, moister conditions to the north and relatively warmer, drier conditions to the south. Up to the 1800s, these southern conditions were more favorable to higher populations of Native Americans—and they were a greater cause of fire, both purposeful and accidental. This maintained more open conditions in the south.

4.  It’s a fruitful area for research. John Curtis, a famous Wisconsin plant ecologist, and his graduate students in the 1950s identified the tension zone as a place where relatively more plant species had their northern and southern range limits. His book, The Vegetation of Wisconsin (1959), talks about this and includes a map of the number of species reaching their limits in each county. Today, researchers are again very interested in the tension zone because of changes in land use that have endangered some native plant species. Also, with climate warming, the area is of interest to both climate scientists and plant ecologists, who are looking at how the tension zone is and will be moving north—and its potential effects on ecosystems.

5.  You’ll know you’re in the tension zone when you’re heading north and … oaks that are dominant in southern Wisconsin, such as Bur, black and white, meet up abruptly with red and white pine as well as paper birch and tamarack swamps that are more characteristic of the north. Shagbark drops out completely and bitternut hickory becomes much less common. You’ll start seeing some birds that are absent or relatively uncommon in the south: common loon, ruffed grouse, osprey, common raven, white-throated sparrow and purple finch. You’ll also encounter northern mammals: snowshoe hare, porcupine, red squirrel, black bear and timber wolf.

David Mladenoff is the Beers–Bascom Professor in Conservation in the Department of Forestry and Wildlife Ecology

Learn Among the Trees

It may sound unlikely. Certainly it sounds idyllic. But there’s a university course where professors may interrupt class to watch sturgeon swim by, and where lectures may be delivered from the bottom of soil pits or gathered around a campfire.

It’s Forestry Summer Camp, a three-week course offered by the forest and wildlife ecology department at CALS’ Kemp Natural Resources Station near Minocqua. The camp, which takes place every other year, introduces students to the information and skills they need to assess a forest’s natural resources—and also gives them ample opportunities to practice those skills in the field.

“It helps us get an idea of forestry and what it entails to see if it’s a good fit for what we want to do in the future,” says CALS junior Kelsey Egelhoff, who attended camp along with 26 other students this summer.

The department’s idea is to have new forestry majors take the course as early as possible. “It’s meant to provide new students with the excitement, the motivation and the context they need to do well in their remaining courses,” says forest and wildlife ecology professor Eric Kruger, one of the camp’s three coordinators.

Early on, students are divided into groups of four and assigned 250-acre tracts of land, called “compartments,” in the nearby Northern Highland American Legion State Forest to survey over the coming weeks. But even just the first step—setting up a compartment’s research plots—is no small matter.

Egelhoff estimates that her group walked for eight hours one day, guided by GPS, to mark their plots with red-flagged stakes—and they only got halfway done. “But even if it’s hard work, just being outside and getting to enjoy it all is really nice,” says Egelhoff, who hopes to go to graduate school and study redwoods in California.

Next the groups use modern tools and techniques to assess the birds, reptiles, amphibians, mammals, soils, woody debris, shrubs and trees on their plots, gathering data for a summary of their compartments and a final research project.

“One unique feature of our camp is that we have students explore the data that they collect and answer specific questions that are pertinent to their interests,” says Kruger.

The camp experience, he adds, has value beyond motivating students.

“I would guess that most employers have been through similar camps in their lives and fully appreciate the importance of these camps for the development of young professionals,” Kruger says.

Chad Morgan

Morgan is a log marketing supervisor with Potlatch Land and Lumber, where he markets pulpwood, bolts, saw logs, and biomass harvested from 320,000 acres in Minnesota and Wisconsin. “The industry has gone through many changes, especially during the last 10 years,” says Morgan. “The name on the door has changed at many of the places that I’ve worked, often due to a changing global economy.” Over the course of Morgan’s career, those names have included Sappi Fine Paper, StoraEnso, and NewPage. While rolling with the changes Morgan remains firmly rooted in the northwestern woods of Wisconsin, which he came to know and love while growing up spending time at his parents’ cabin.

Darren Marsh

Dane County Parks Director Darren Marsh oversees more than 12,000 acres of parks and natural resource areas with some 1.25 million visitors each year. What you might not know: Dane County Parks was one of the first park programs in the nation to develop a dog exercise program (“Dog Parks,” 1994) and has a nationally recognized disc golf course at Token Creek Park. “I have a great job,” Marsh acknowledges. “I help people with special events ranging from large bike races, marathons, and music events to family reunions and youth activities. I really enjoy opportunities to restore and manage natural resource areas that include wetlands, prairies, and forests.”

Richard Hilliker

Hilliker spent much of his career as manager of land and water resources with Consolidated Papers, Inc. (CPI) and president of Wisconsin River Power Co., a hydroelectric company owned by CPI, Alliant Energy, and Integrys Energy. His duties included managing the federal relicensing of seven hydroelectric facilities on the Wisconsin River and planning for the eventual disposition of CPI timberlands in Wisconsin and Minnesota. Now nominally “retired,” he owns and runs two businesses, one a private consulting firm specializing in land management and real estate sales and the other, growing and wholesaling Christmas trees.

Howard Nelson

Nelson spent five years as CEO of the Asa Wright Nature Center in Trinidad and Tobago, where he was responsible for managing research and ecotourism on 1,300 acres of secondary tropical forest. Now he’s developing a regional master’s degree program in biodiversity conservation to help countries implement their national action plans in keeping with the Convention on Biodiversity. Four universities—the University of the West Indies, the University of Belize, the University of Guyana, and the Anton de Kom University of Suriname—will offer the degree.