12 in 125

1. The Genomics Revolution

When CALS geneticist Fred Blattner sequenced the genome of a harmless strain of E. coli back in the mid-1990s, it was a big deal. The bacterium was among the earliest organisms to be sequenced, and the effort, which landed a high-profile article in Science in 1997, took years to complete and involved the participation of more than 269 people.

How times have changed.

“Now you can just send something like that to a sequencing center and one person can do the work overnight,” says genetics professor Audrey Gasch, who joined UW–Madison in 2003 as part of a strategic hiring initiative to bolster research in genomics, the field of science that looks at the full set of DNA within organisms.
Over the years, UW researchers have also helped sequence the genomes of potatoes, corn (maize), multiple strains of mice, the leaf-cutter ant, the plant pathogen that caused the Irish Potato Famine and 99 strains of cold virus, among others.

Beyond sequencing itself, CALS researchers are using genomic information to:

• study molecular evolution,

• better understand virulence genes in pathogens,

• find genes involved in human health and disease,

• develop an optical map of the bovine genome,

• locate genes associated with infertility in dairy cows, and much more.

Gasch, in one bioenergy-related project, compares the genomes of traditional laboratory yeasts to those of their wild relatives in order to pinpoint the genes that make the wild strains more stress tolerant.

“Down the line, this information will help us make customized yeast strains that are optimized to produce different types of biofuels,” she says.

2. Bigger, Better Dairy

The last 25 years of dairy research, education and outreach at CALS have driven progress and productivity gains in the Wisconsin dairy business. Since 1989, average milk production per cow per year has climbed 57 percent, from 14,000 pounds to nearly 22,000 pounds per cow today. The state’s dairy farmers reversed a 16-year decline in milk production in 2005. In the last nine years they have boosted annual output by 25 percent, producing a record 27.7 billion pounds in 2013.

These gains, the result of a combination of advancements in cow genetics, reproductive management, nutrition and facilities; adoption of professional management techniques; and a well-educated, receptive group of dairy producers, have revitalized dairying in the Dairy State.

CALS scientists developed mechanisms to mine the bovine genome and then put the results in the hands of dairy producers. Researchers refined and produced the tools needed to take advantage of genetic knowledge with novel methods for breeding and selecting cattle. Dairy nutritionists at UW–Madison probed feedstuffs and the rumen to create total mixed rations that enable cows to produce to their full genetic potential.

Biological systems engineers, veterinarians and dairy scientists collaborated to develop new bedding and stall types to keep cows comfortable and productive. A complementary mix of educational resources—statewide UW–Extension programs, CALS Farm and Industry Short Courses, and campus teaching facilities and faculty—helped dairy farmers learn and adapt the new technologies to their needs. That extensive research and outreach network gives dairy producers access to the latest and most sophisticated management practices—a partnership that promises to keep Wisconsin dairy strong.

3. Coping with the Climate

CALS scientists had our changing climate on their radar screens 25 years ago, but it wasn’t on their research agendas. Today the issue influences work being done in every corner of the college. CALS scientists are studying climate impacts at the ends of the earth, in the Lake Mendota basin and everywhere in between. They’re looking at the big picture (using satellites) and small (using genomic sequencing). They’re looking under tree bark and inside the guts of dairy cows, and they’re looking at impacts on the human animal—on farmers’ management practices, for example, and the migration patterns of residents of low-lying coastal areas.

To name some examples: soil scientist Jim Bockheim is looking at whether warming will turn permafrost in Antarctica from a carbon sink to a carbon source, while wildlife ecologist Christine Ribic investigates what melting sea ice means for Adelie penguins. Forest ecologist Phil Townsend and entomologist Ken Raffa are studying the climate-fueled spread of tree-killing bark beetles into new habitats in the Rocky Mountains, while entomologist Rick Lindroth studies how rising levels of carbon dioxide affect forest tree susceptibility to a variety of insects. Soil scientist Matt Ruark leads a multistate project to help dairy farmers reduce their carbon footprint and adapt to weather extremes.

And Chris Kucharik, a climate scientist on the agronomy faculty, helps lead a campus-wide effort to model the impact of climate change on water quality, water quantity and crop yields right where he lives—in the Yahara River watershed—over the next 60 years. Kucharik also serves as co-chair of the agricultural working group with the Wisconsin Initiative on Climate Change Impacts (WICCI), a partnership between UW–Madison, the Wisconsin Department of Natural Resources and an array of other public and private institutions.

These are but a few highlights. It is safe to say that researchers in every CALS department are working in some way on mitigating or adapting to the impacts of our changing climate.

Comments are closed.