Vanishing Waters?

Even before he bought a summer cabin on Long Lake in 2004, Brian Wolf was concerned about the water level. At its deepest point, the Waushara County lake was only about five feet deep, down from historical highs around 10 feet. “I contacted the folks at a state agency asking, ‘Can you tell me what’s up? I’m worried it’s a dying lake,’” says Wolf, a psychologist based in Kenosha. “The response I got back was, ‘There’s no such thing as a dying lake.’”

During his family’s first summer there, Wolf’s worries seemed unfounded. His children caught and released dozens of bass. But by the summer of 2006, the lake had gone almost completely dry—it was a muddy bed littered with dead fish. Now it’s just a grassy field that floods during rainy spells. “Do we still enjoy our cabin? Absolutely. Do we enjoy it as a lake place? No,” says Wolf. Property values dropped so much that “they basically stopped taxing folks on Long Lake as having lake property,” he says.

And Long Lake wasn’t the only place with water problems. Around the same time, a number of other lakes and streams in the Central Sands region, the heart of Wisconsin’s $6 billion potato and vegetable industry, went dry or hit record lows. A landscape once covered in prairie and scrub oak, the region is now a mosaic of circles—160-acre fields of potatoes, sweet corn, peas and other specialty vegetables watered by center-pivot irrigation systems. These systems keep the region’s crops alive between rains and are fed by high-capacity wells that each can pump more than 100,000 gallons per day from the region’s aquifer. Many of those concerned about the area’s disappearing surface waters see the pumps as the obvious culprit, sucking water up and away from local groundwater-fed lakes and streams. Yet the problem may not be that simple.

To help understand and solve the region’s growing water dilemma, CALS has launched a Central Sands Water Initiative with support from the college’s Wisconsin Institute for Sustainable Agriculture. The initiative aims to bring together a broad network of stakeholders—including farmers from the Wisconsin Potato and Vegetable Growers Association, members of local lake and environmental groups, state and federal agency staff, and scientists from UW–Madison and beyond—not only to study the impact of irrigation pumping on the region’s ground and surface waters, but also to find solutions to help refill the dry lakes and streams. At the same time, the initiative’s scientists also plan to explore the possibility that a larger force is altering the overall water balance in the region: climate change.

“Some believe the facts are well established, that irrigation is the only reason for the problem, but we don’t really know that yet,” says Sam Kung, a professor of soil science and the initiative’s coordinator. “It’s also possible that the region’s climate has changed in such a way that the atmosphere is taking more water away from the system.”

Either way, water shortages are expected to increase around the world, where 70 percent of the fresh water people use goes to food production.

“Water is on the cusp of being limited in a substantial way almost everywhere around the globe, and because of water’s importance in agriculture, it’s obvious that solutions will have to have an agricultural focus,” says A.J. Bussan PhD’97, a horticulture professor who leads the initiative’s crop production studies. “Through this initiative, the Central Sands has the potential to serve as a model for other places with multifaceted water demands, showing them how a community can come together to devise a water policy that’s effective.”

But getting the Central Sands community to sit down and talk won’t be easy. Its members are engaged in a contentious debate about the region’s water woes, and with so much at stake—including growers’ livelihoods, residents’ investments and the survival of local lakes and streams—it’s bound to be a difficult conversation.

“This isn’t the typical CALS situation where there’s a problem out there that everybody acknowledges, we marshal CALS science and go solve the problem, and everybody lives happily ever after,” says Peter Nowak, a rural sociologist and emeritus professor at UW’s Nelson Institute for Environmental Studies who last summer agreed to moderate a series of community forums for Central Sands citizens.

In Search of Spuds

TO COLLECT WILD potatoes from around the planet, David Spooner has touched down on mountain peak landing strips, scaled potato-coddling trees in old growth rainforests and endured double vision while hiking over a 17,000-foot mountain pass between Bolivia and Peru. A CALS horticulture professor and researcher with the U.S. Department of Agriculture, Spooner made these trips to give plant breeders the raw materials they need to better protect cultivated potatoes from disease. But a few years ago, he abruptly stopped. Grow recently sat down with Spooner to ask why.

How different are wild potatoes from our cultivated varieties?

Very different. Wild tubers, for instance, are often tiny and mildly poisonous. Most of them have long stolons—their underground stems. And actually, the tuber that we eat is just a swollen stolon. So with wild potatoes, it’s often an Easter egg hunt to try to find the tubers. One thing people breed for with potatoes is short stolon. Obviously, you don’t want to put a potato plant in the ground and then have to harvest the potatoes 20 feet away.

How about good traits? Why is it important to preserve the biological diversity of this species?

So that plant breeders have access to the genetic diversity needed to improve our cultivated potato. Wild potatoes are an enormous reservoir of beneficial traits, including disease resistance, nutritional qualities and a whole range of agronomic traits. By agronomic traits, I just mean how (a potato) grows, how it processes, what it looks like and those types of things.

Wild potatoes are an enormous reservoir of beneficial traits, including disease resistance, nutritional qualities and a whole range of agronomic traits.

With all of the agricultural tools available to farmers in America today, are our potatoes really at risk for disease?

Many diseases can be avoided through chemical control, and in the United States, we can afford the pesticides, insecticides and fungicides needed for that. However, there are certain diseases that can’t be controlled very well. So yes, disease is still a big problem here, and people are constantly trying to better the potato’s resistance to those particular diseases.

Is there any chance that we could face another devastating crop failure on the scale of the Irish Potato Famine?

During the Irish Potato Famine, a major disease almost completely wiped out the potato crop (in Europe) because potatoes didn’t have resistance to that disease. It was a classic case of an emerging disease, an example of something we are constantly concerned about. In fact, disease resistance is one of many reasons why we collect and preserve (wild potato) germplasm —in order to try to breed crops that have resistance to diseases that we think might be a problem.

So really, collecting and storing this germ-plasm is about preserving biodiversity.

Yes—but I wouldn’t say I’ve always thought of it that way. As a formally trained botanist, I knew about biodiversity, but I only thought about it in the sense of preserving plants and animals in their natural environment, like in the rainforest. I didn’t think about it in the context of plant breeding, because that wasn’t my training. This idea wasn’t obvious to me until I joined a community that uses biodiversity in an applied sense, instead of in the usual “green” sense. Now it’s clear to me that biodiversity can be viewed in an ecological context, as well as in more of an applied agricultural context.