Menu

Spring 2019

On Henry Mall

Like his great-grandfather, Richard Gumz raises mint — along with carrots, onions, and potatoes — at his farm near Endeavor, Wis. One acre of Wisconsin mint supplies enough mint flavoring for 50,000 to 80,000 tubes of toothpaste. Photos by David Tenenbaum

As you approach a basic steel structure at the West Madison Agricultural Research Station, your nose informs you before your eyes do that you’ve found the outdoor laboratory of CALS agricultural engineer Scott Sanford. Here, the sharp, fresh aroma of mint leaves permeates the air.

Scott Sanford, an extension specialist in the Department of Biological Systems Engineering, holds a jug of fresh mint oil. Sanford has been honing an energy-saving, continuous flow method to remove mint oil from tons of mint plants.

For three years, Sanford has been honing an energy-saving, continuous flow method to remove mint oil from tons of mint plants. Today, the standard extraction procedure involves injecting steam through a tub of chopped mint — a two-hour process with somewhat unpredictable results.

Mint oil — an essential flavoring for gum, toothpaste, mouthwash, and tea — is grown by a dozen Wisconsin farmers on about 3,000 acres, usually on lowland “muck” soils in the south-central part of the state. Nationally, 82,700 acres of peppermint and spearmint were grown in 2017, mainly in the Northwest.

In Sanford’s tests, mint hay is unloaded from a wagon and metered into a 13-foot-long, steam-heated steel cylinder where an 18-inch auger moves and mixes the hay. At the far end, the steam and oil are condensed, and then, in a separate tank, the oil floats to the top of the water and is drained off.

Trapped under the roof of the lab’s temporary shelter, the pleasant, familiar scent of mint can be concentrated into a cloying odor; but to a mint farmer, it’s the smell of money.

The experiments are not without complications. As Sanford describes his search for a low-energy, continuous extraction process, an auger gets plugged up. Instantly, the afternoon program shifts from taking samples and analyzing productivity to disassembling and unplugging the auger, the centerpiece of Sanford’s invention.

Jack Kotte, a senior majoring in biological systems engineering, works to unplug the auger in a mint processing machine.

As Jack Kotte, a UW–Madison senior majoring in biological systems engineering, opens the machine and wrestles with the jam, Sanford says he’s shown that oil can be extracted in only five or six minutes versus a couple of hours with the conventional method.

A second benefit of the new process is greater control, says Sanford, who is an extension specialist in the Department of Biological Systems Engineering. “All the motors are variable speed, so we can control the residence time, feed rate, and steam pressure.”

Current methods only control steam pressure and time. “The material sits in a tub as the steam is forced through,” Sanford says, “but if the tub is not loaded evenly, you can get dry pockets, or the steam may exit too quickly through an unwanted escape channel. With the new method, the mint hay is continuously being mixed to ensure good steam contact.”

Gumz checks the level of mint oil at his distillery. Of Sanford’s new mint oil extraction process, he says, “If there is a means of doing it in a more timely manner, or a cost savings, that would help us be competitive with other growing areas and improve both sustainability and profitability.”

Richard Gumz, who grows 1,000 acres of mint (mostly peppermint) near Endeavor, in central Wisconsin, says energy eats a big part of his farm budget. “The steam distillation process that we use now for extracting oil is time-consuming and energy-consuming.”

A third advantage of the new process is potentially equal to the other two: it can handle wetter mint, which reduces the time needed to dry leaves in the field.

That could be a compelling reason to adopt the new process, adds Gumz, who is president of the Wisconsin Mint Board, Inc. “Now, after cutting, we have to wait 48 to 72 hours for drying to remove hay from the field,” he says. “If Scott’s process allows us to get it out in 24 to 36 hours, that would reduce our risk. Any time mint is cut and laying in the field in Wisconsin, rainfall can remove oil from the leaf or knock leaves off the plants.”

In Wisconsin, mint hay is harvested in wagons that, when full, are connected to the farm’s steam supply for extraction of the oil. Photo courtesy Gumz Farms

At worst, mint that’s plastered to the ground by heavy rain can “rot to the point where it’s not even salvageable,” Gumz adds.

Because the continuous extraction process, like the existing one, will use steam to disperse the oil as vapor, it can utilize the steam boiler found on all mint farms. Spent hay from the new process could even be dried with waste heat and then burned to fuel the steam generator, allowing the process to run on renewable energy.

If Sanford can prove that the process will actually save energy — and work reliably — he says it will be up to private industry to make and sell the equipment. “I’m not trying to invent a product. I’m trying to prove a process.”

These studies are funded by a specialty crop research grant from the U.S. Department of Agriculture National Institute of Food and Agriculture.

This article was posted in Food Systems, On Henry Mall, Spring 2019 and tagged , , , , , , , , .